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1 PROBLEM AND MOTIVATION
Growing concerns about the trustworthiness of state-of-the-art Ar-
tificial Intelligence (AI) systems hinder their deployment in safety-
critical domains such as autonomous driving [4] and healthcare [2].
To tackle this, the field of Certified AI aims to formally certify the
trustworthiness of Deep Neural Networks (DNNs). Formal guaran-
tees provide a more reliable metric for assessing the suitability of
a DNN for real-world deployment than standard test-set accuracy.
Unfortunately, existing certifiers are severely limited in the types of
models, properties, and hardware that they can handle. Extending
these works to new cases is often error-prone and requires substan-
tial manual effort and expertise, limiting their accessibility to the
general users of deep learning frameworks who may not have the
necessary background to develop a DNN certifier.

To overcome these barriers, we envision a compiler framework
that can automatically generate precise, scalable, fast, and memory-
efficient code for certifying properties for arbitrary DNNs, opti-
mized for different hardware. As the first step, we propose a DSL
called ConstraintFlow to specify DNN certifiers with minimal high-
level description. For example, Figure 1 shows that we can specify
thousands of lines of intricate C-code of DeepPoly [1] in just 16
lines of ConstraintFlow. The certifier specifications in Constraint-
Flow are functional, declarative, and pointer-free making it suit-
able for advanced compiler optimizations. Further, we also support
automatic verification for the correctness of the certifier code to
eliminate any algorithmic or implementation errors early in the
development process.

2 BACKGROUND AND RELATEDWORK
Most state-of-the-art DNN certifiers achieving the best tradeoff
between precision and scalability, are based on Abstract Interpreta-
tion [5]. At a high level, these certifiers have 3 main steps: (i) design-
ing an abstract domain whose elements should over-approximate
the values of all the neurons, (ii) developing abstract transformers
that should over-approximate the effect of each DNN operation like
Affine, ReLU, etc, and (iii) proving that the abstract elements and
transformers over-approximate the concrete neuron values.

The domains used in state-of-the-art certifiers associate rela-
tional (e.g., DeepPoly, DeepZ) or non-relational (e.g., Interval) con-
straints with each neuron. For example, for each neuron 𝑛, Deep-
Poly [9] shape associates four constraints - ⟨𝑙, 𝑢, 𝐿,𝑈 ⟩ where 𝐿 and
𝑈 are polyhedral expressions of the form

∑
𝑗 𝑎 𝑗 · 𝑛 𝑗 s.t. 𝐿 ≤ 𝑛 ≤ 𝑈 ,

and 𝑙 and 𝑢 are interval constraints, s.t., 𝑙 ≤ 𝑛 ≤ 𝑢. Similarly,
Zonotope-based certifiers [3, 7, 8] associate with each neuron an
affine form 𝑍𝑛 =

∑
𝑗 𝑎 𝑗 · 𝜖 𝑗 , where ∀𝑗, ∃ 𝜖 𝑗 ∈ [−1, 1] s.t. 𝑍𝑁 = 𝑛.

The abstract transformers compute the constraints for each neuron
based on the constraints of previously visited neurons. Finally, one
proves that the transformers are sound, i.e., they meet the over-
approximation property.

3 APPROACH AND UNIQUENESS
We describe ConstraintFlow next.
Abstract elements Different expressions used by the popular do-
mains like DeepPoly and DeepZ are provided as different types
(PolyExp and ZonoExp) in ConstraintFlow. We define a Shape con-
struct to specify a set of expressions that define the abstract element
for each neuron. For instance, the DeepPoly shape can be defined
in ConstraintFlow as in Line 1 Figure 1a.
Abstract Transformers To specify transformers in Constraint-
Flow, we provide a transformer construct which encapsulates the
computations for each expression of the abstract element in a func-
tional and declarative style. Further, we provide a flow construct
to specify the order of the flow of constraints in the DNN. This
includes forward flow (input layer to output layer), backward flow
or any sequence of these [10]. This construct instructs the compiler
to apply the computation specified in the transformer to all the
neurons in the DNN in the specified order. For instance, in line 16
of code 1a, the deeppoly transformer is applied to the neurons of
the DNN in a layer-wise fashion traversing the DNN in the forward
direction until the last layer.

Depending on the flow direction, the computations for a neuron
depend on the neurons in previous layers (for forward flow) or next
layers (backward flow). These neurons can be accessed using the
prev construct. For example, line 9 of the code in Figure 1a shows
the DeepPoly approximation of the ReLU operator in Constraint-
Flow. In the case of ReLU, prev is a singleton list. The code computes
the convex approximation in 3 cases depending on the bounds of
the neurons in the prev list. The functional and declarative style
of the specifications will lead to effective compiler optimizations
and parallelizations. For instance, in the case of Figure 1a, since the
neuron ordering within each layer is not specified, the compiler
can take the opportunity to parallelize their computations.

The Affine abstract transformer for DeepPoly (line 13 In Fig-
ure 1a) involves a more complicated backsubstitution step for com-
puting the 𝑙 and 𝑢 for the neurons. Given a polyhedral expression,
this step iteratively visits its constituent neurons in a specific order
(possibly different from the one specified in flow), and replaces
them with their respective bounds. The order affects the precision
and the speed of the backsubstitution step. In ConstraintFlow, we
provide traverse construct for a directed traversal through the
DNN where the order can be specified by the programmer. This
provides a flexible way of specifying traversal without having to
write any loops, which hinder compiler optimizations and auto-
matic verification. The programmer can use the flexibility provided
by traverse to adjust the precision/speed tradeoff. Lines 7 and 8 in
Figure 1a shows how traverse can be used for the backsubstitution
step in DeepPoly.
Verification To ensure soundness, the abstract shape is also asso-
ciated with a soundness condition that the transformers need to
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(a) DeepPoly certifier in just 16 lines of ConstraintFlow

(b) Thousands of lines of intricate C code taken from just one of the many (around 10) files of DeepPoly Specification in the ELINA framework

Figure 1: Over 1000x Lines of Code (LOC) improvement from C to ConstraintFlow

satisfy. For example, for DeepPoly, each neuron’s value should lie
between its bounds, i.e., 𝑙 ≤ 𝑛 ≤ 𝑢, 𝐿 ≤ 𝑛 ≤ 𝑈 . In ConstraintFlow,
we provide constructs to specify such soundness conditions (as in
line 1 Figure 1a). We provide automatic verification of the sound-
ness of abstract transformers w.r.t these conditions to reduce the
burden of proving them manually. The minimal, declarative, and
functional design of ConstraintFlow makes automatic verification
efficient.

4 RESULTS AND CONTRIBUTION
We have implemented the lexer, parser, type-checking, and auto-
mated verification in Python. We can verify the correct implemen-
tations of Interval, DeepZ, and DeepPoly certifiers, written in < 20
LOC, by automatically generating Z3 [6] queries from their Con-
straintFlow implementations. We can identify bugs in any incorrect
implementations of these algorithms. All verification queries finish
within < 0.2𝑠 . Our design makes writing new certifiers substantially
simpler allowing developers to focus on designing better abstract
domains and abstract transformers, without manually checking
their soundness.
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