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ABSTRACT

LLM-based theorem provers differ widely in how they organise interaction be-
tween language models and interactive theorem provers, ranging from whole-
proof generation to tactic-level and multi-stage pipelines. We propose a unified
operational framework that makes this interaction structure explicit by modelling
proof search as transitions over a joint formal and informal state and by introduc-
ing orchestration as a first-class abstraction that controls how tools such as lan-
guage models, retrieval components, and provers are scheduled and coordinated.
Within this framework, existing systems such as Baldur, COPRA, DSP, POETRY,
etc, can be expressed uniformly as different orchestration strategies, enabling prin-
cipled comparison of interaction patterns, rapid prototyping of new strategies, and
backend-agnostic evaluation and reuse across provers, libraries, and models.

1 INTRODUCTION

In recent years, a rapidly growing body of work has proposed LLM-based theorem-proving sys-
tems that combine large language models (LLMs) with interactive theorem provers (ITPs) such as
Lean (Moura & Ullrich, |2021)) and Coq (The Coq Development Team| 2017)). Representative exam-
ples include systems such as Baldur (First et al.| [2023), COPRA (Thakur et al., 2024), DSP (Jiang
et al.;[2023), and POETRY (Wang et al.,2024)). These systems differ substantially in how they organ-
ise the interaction between an auxiliary component (typically an LLM, often combined with retrieval
and other heuristics) and a formal proof engine. Some approaches aim to synthesize an entire proof
in a single step and subsequently repair it when verification fails (Baldur). Others proceed incre-
mentally by repeatedly predicting and applying individual tactics (COPRA). In contrast, yet others
adopt multi-stage or recursive pipelines (DSP, POETRY) that first construct informal proof drafts or
sketches and only later attempt full formalisation. Despite their apparent algorithmic diversity, these
systems repeatedly alternate between informal reasoning and formal verification while maintaining
an evolving internal state. However, this common structure is not made explicit in existing work.
Instead, each system is presented as a standalone algorithm, and the interaction pattern between the
LLM and the ITP is hard-coded into the system design. So, it remains difficult to pinpoint which
elements of the system are responsible for the improved results over baseline systems.

We present MAESTRO (Figure[I), a unifying operational formalism for LLM-based theorem-proving
systems that makes this implicit structure explicit. Our formalism models the internal algorithm state
as a pair consisting of a formal component for interaction with an ITP and an informal component
that stores auxiliary information produced and consumed by components such as LLMs and retrieval
systems. Proof search is described as a sequence of transitions over this shared state, where each
transition advances either the formal or the informal component or both. A central concept in our
formulation is orchestration: the policy that determines which component of the state is advanced
at each step and how information flows between the informal and formal parts. Under this view,
systems such as Baldur, COPRA, DSP, POETRY, etc, are instances of the same operational model
with different orchestrators. This formalism yields several important benefits.

Unifying view and theoretical comparability. First, it exposes a common design space for de-
scribing diverse existing theorem-proving systems that are currently presented as fundamentally
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Figure 1: Conceptual overview of MAESTRO.
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different algorithms. By expressing these systems in terms of a shared notion of state and an or-
chestrator, it is possible to compare and analyse their interaction strategies at a conceptual level,
independently of implementation details, engineering choices, or presentation style.

Rapid prototyping of new strategies. It enables rapid prototyping of new proof strategies by
allowing alternative interaction patterns to be explored through changes to the orchestrator alone,
without modifying prover-specific interfaces, prompt pipelines, or retrieval infrastructure.

Backend-agnostic transfer of orchestration strategies. Third, our formalism separates orchestra-
tion from the ITP, libraries, and LLMs on which a system is instantiated. This is crucial in practice,
because many existing approaches implicitly rely on prover-specific ecosystems, such as large cu-
rated libraries (e.g., mathlib in Lean) and LLMs fine-tuned on data from that environment. So,
it is unclear whether their reported effectiveness reflects a generally useful interaction or merely the
availability of rich supporting infrastructure. By making orchestration independent, the same orches-
trator can be evaluated on different I'TPs for which no large training corpora exist, like NulTP (Duran
et al.| 2024)). This enables testing if an orchestrator generalizes across proof environments.

Towards adaptive and autonomous orchestration. Making orchestration a first-class component
highlights a key limitation of most existing systems: the interaction between the tools is fixed in
advance and applied uniformly to all problems. In practice, different stages of a proof may ben-
efit from different modes of interaction, for example, whole-proof synthesis in easy phases and
tactic-level exploration in harder ones. Our formulation naturally motivates a mixed or completely
autonomous orchestrator that dynamically selects interaction modes based on the evolving algorithm
state. Further, by implementing existing strategies in a unified framework, it would enable a system-
atic collection of diverse execution traces describing how different orchestrators guide proof search.
These can serve as training data for an autonomous orchestrator. While this is beyond the scope of
this work, the proposed formalism provides a foundation for such autonomous approaches.

In summary, this paper makes the following contributions:

* We introduce MAESTRO, a unifying operational model for theorem-proving systems that
separates the algorithm state from the orchestrator that governs the interactions of tools.

* We show that a range of recent systems, including Baldur, COPRA, DSP, and POETRY, can
be expressed within this model by specifying only their orchestration strategies.

2 DIFFERENT PROVING STYLES

Without providing an exhaustive survey, we review some representative theorem-proving systems
that have emerged in recent work. While not mutually exclusive, these exhibit substantially different
interaction patterns between different tools such as LLMs, retrieval systems, and ITPs.

Whole Proof Generation. A first class of systems follows a coarse-grained LLM-interaction based
on whole-proof generation. Given a theorem statement, these systems prompt the model to produce
a complete proof in a single step, which is then submitted to an ITP for verification. If the prover
rejects the script, some systems (e.g., Baldur|First et al.|(2023)) invoke the language model again to
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repair or regenerate the proof and repeat this process for a bounded number of iterations. Several
theorem-proving systems fall into this category, differing mainly in the choice of theorem prover,
language model, prompting strategy, and auxiliary tooling ( |[First et al.|(2023)); Zhang et al.| (2025);
Dong & Mal (2025)); Lin et al.| (2025c¢)); [Wang et al.| (2025); Xin et al.|(2024)).

Next Tactic Prediction. A second class of systems adopts a fine-grained, tactic-level interaction.
Starting from an initial theorem statement, these systems repeatedly query a model for the next tactic
to apply. Each proposed tactic is immediately executed in the ITP, yielding a new proof state. This
process continues until all goals are discharged. When progress stalls, some systems may backtrack
(e.g., CopPrA [Thakur et al.| (2024)) to earlier proof states and explore alternative tactic sequences.
Representative examples of this class include systems such as COPRA and related tactic-prediction
approaches ([Thakur et al.[(2024);|Yang et al.| (2023); |Lin et al.|(2025b)); \Gauthier et al.| (2021)).

Hybrid Approaches. Besides the two extremes, a third class of systems typically decomposes
proof construction into ad hoc steps. An example is DSP (Jiang et al.| [2023)), a multi-stage proof
synthesis pipeline. It first uses an LLM to generate an informal proof draft, which is subsequently
refined into a higher-level proof sketch, again using the LLM. Then, a fully formal proof is verified
by the ITP. Related ideas appear in Wang et al.| (2024); Lin et al.|(2025a); Dong et al.|(2024).

Despite their apparent fundamental differences, these systems share a common operational struc-
ture: each maintains an evolving algorithm state and advances it by selectively invoking external
tools. The primary distinction among existing approaches therefore lies not in the representation of
this state, but in the policy governing how the state transitions using different tool interactions. For
instance, whole-proof generation, tactic-level, and hybrid systems differ mainly in how they sched-
ule and interleave these interactions. We refer to this as the system’s orchestration. Viewed this way,
these systems are different orchestrator instantiations in a unified operational framework.

3 MAESTRO: AN OPERATIONAL FRAMEWORK

We now introduce MAESTRO, a unified operational framework for theorem-proving systems (Fig-
ure . The framework comprises of 3 conceptual components: (i) the algorithm state, (ii) the tools
that alter the algorithm state, and finally, (iii) the orchestrator that acts as a control plane to orches-
trate different tools to alter the algorithm state iteratively until the given theorem is proved.

3.1 ORCHESTRATING THE ALGORITHM STATE

The algorithm state is defined as S = (F\, I), where F is the formal component and I is the informal
component. At any step, the formal component F' represents the current formal proof object and its
associated proof obligations. Concretely, it contains a proof tree or proof term under construction,
together with a set of open goals and auxiliary metadata maintained in the formal syntax of the ITP.
Some nodes of this proof structure may be open (unproven), while others are already closed (proved)
by previously applied proof steps. The informal component I contains all auxiliary information that
is not part of the formal proof object but is used to guide the proof. This includes, for example,
natural-language explanations, informal proof sketches, partial scripts, natural-language conjectures,
retrieved lemmas from external libraries, prompt templates, interaction histories with one or more
language models, and any additional search or bookkeeping data maintained by the system.

Under this formulation, theorem proving is a search over a state space whose nodes are algorithm
states of the form (F,I). The search starts from the state (7', ¢), where the formal component
contains the original theorem 7" as an open goal, and the informal component is empty (¢). The goal
is any state (P(T'), -}, whose formal component contains a complete proof P(7T'), while the informal
component is unconstrained. An orchestrator controls the search process by mapping the current
state to a choice of tool invocation. Intuitively, the orchestrator decides which tool to invoke at a
given point, such as a particular LLM, a retrieval engine, or an ITP, and how the resulting information
should be incorporated into the evolving state. So, it governs when to attempt formal proof steps,
when to gather auxiliary information, when to revise previous decisions, when to backtrack, etc.
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Table 1: Instantiations of MAESTRO

3.2 STATE TRANSITIONS USING ToOL CALLS

In MAESTRO, the orchestrator has a set of tools at its disposal to modify the algorithm state it-
eratively. Typical tools include theorem provers, LLMs, retrieval engines over libraries of proven
theorems (e.g., mathlib), and human-in-the-loop (Song et al., [2025). Each tool call induces a

transition on the algorithm states: (F,I) - (F’, I}, progressing the search space traversal. The
final goal of the orchestrator is to find a sequence of tool calls ¢; that leads it to the goal state, i.e.,

(T, ¢) I (Fy, I) 2yl (P(T),_). Some tools affect the informal component (e.g., gener-
ating a proof sketch, retrieving related lemmas, refining a prompt), while others affect the formal
component (e.g., applying a tactic, assuming a lemma, etc). However, a tool may, in general, update
both components. In particular, backtracking, state repair, or state rewriting operations are naturally
modeled as tools that replace the current formal or informal component by a previous version.

4 INSTANTIATING THE FRAMEWORK

We view most existing systems as instances of MAESTRO. Although they appear diverse, MAESTRO
reveals that they primarily differ in orchestration policies. This perspective clarifies variations in
search strategies and tool use, enabling simpler comparison and a unified framework. We illustrate
representative theorem-proving systems by describing their orchestrators in Table

Baldur. It begins by prompting an LLM to generate a complete proof candidate, C;, within the
informal state. It then submits this candidate to the ITP for formal verification, leading to the formal
state F. If verification fails, the orchestration prompts another informal transition to repair or
regenerate the candidate, C, before submitting it again to the ITP, resulting in the formal state F5.

COPRA. Starting from the current state (F;, I;), the orchestration retrieves related lemmas to update
the informal state, I;, 1. Next, an LLM is prompted to propose a tactic t;, which is applied by the
ITP, leading to a new state (F; 1, I;11). This cycle continues until all goals are discharged.

DSP. DSP follows a 3-step orchestration. First, an LLM generates a proof draft, D. Next, the LLM
refines this draft into a formal proof sketch, S. Finally, the orchestration invokes the ITP to verify
the sketch, transitioning to the formal state F7.

POETRY. POETRY employs a recursive sketch-refinement approach. At each level, the orches-
trator advances the informal component to produce a proof sketch, S; 1, outlining the high-level
structure of the formal state F;. Intermediate subproofs are abstracted with placeholders, deferring
their verification. The ITP is then invoked to verify the sketch, changing the new formal component
to Fj 1. If the verification fails, the system backtracks and repeats the process.

5 CONCLUSION AND FUTURE WORK

We presented MAESTRO, a unifying operational formalism for LLM-based theorem-proving sys-
tems that separates the evolving algorithmic state from the set of available tools and the orchestra-
tor that governs their interaction. By making orchestrator a first-class component, our framework
provides a common basis for describing and comparing existing systems, clarifies the role played
by interaction strategies independently of specific models or prover infrastructures, and enables
systematic exploration of alternative proof-search behaviours. As future work, we plan to realise
this formalism as a practical framework in which existing systems and representative orchestration
strategies can be instantiated and re-implemented over a shared set of state representations and tool
interfaces. We will design and evaluate new orchestrators, including mixed strategies that combine
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coarse-grained synthesis and fine-grained tactic exploration. A key goal is to study transfer across
backends by instantiating the same orchestration policies with less commonly used and structurally
different theorem provers, such as NulTP. Finally, we will collect execution traces from multiple
orchestrators and tool configurations and use them to train and fine-tune an autonomous orchestrator
that learns to select and adapt interaction strategies based on the evolving proof state. We believe
that this framework will enable more robust, modular, and general theorem-proving systems.
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