
ConstraintFlow: A Declarative DSL for Certified Artificial Intelligence
Avaljot Singh

Bounded Automated VerificationConstraintFlow DesignUnreliable AI

Certification using Abstract Interpretation

Abstract Domains
1. Polyhedral – DeepPoly, CROWN, Fast-Lin, Neurify
2. Zonotopes – DeepZ, RefineZono, AI2
3. Symbolic Intervals – NeuroDiff, ReluDiff, ReluVal

Department of Computer Science

Standard test set accuracy is not enough.
Formal guarantees provide a more reliable metric

Formal Certification

Problems with Existing Libraries

Enormous unverified codebases, error-prone,
non-scalable, limited DNN architecture

Main Theorems

Evaluation

Γ, 𝜏𝑠 ⊢ 𝑒 ∶ 𝛾 ∧ ⊥ ⊏ 𝛾 ⊏ ⊤ ∧ 𝐹, 𝜌,ℋ𝑐 ~ Γ, 𝜏𝑠 ⇒
𝑒, 𝐹, 𝜌,ℋ𝑐 ⇓ 𝜈 ∧ ⊢ 𝜈: 𝛾′ ∧ 𝛾′ ⊑ 𝛾

(𝝉𝒔⊢ 𝒔 ∶ 𝜞) ∧ 𝓗𝒄~ 𝝉𝒔 ⇒
𝒔, 𝝉𝒔 ⇝ (𝓗𝒔, 𝑪) ∧ {| s,𝝉𝒔, 𝓗𝒄 ,𝓗𝒔, 𝑪|} ↕ [𝒗], [𝒖] ∧

(𝒗 ,𝓗𝑪 ≼𝑪 𝒖 ,𝓗𝒔)

• Abstract Interpretation based DNN certifiers need to maintain over-
approximation. Existing libraries can be buggy. We provide bounded automatic
verification to ensure correctness of soundness property.

Over-approximation-
based Soundness

• DNN certifiers have large polyhedral expressions which are implemented using
large arrays involving intricate pointer arithmetic. We provide these as separate
types - PolyExp

Polyhedral
Expressions

• Existing libraries are implemented using complex imperative constructs like
nested loops, making verification hard. We provide declarative, loop-free,
pointer-free DSL design.

Complex Imperative
Code

• Transformers need arbitrary graph traversal through the DNN, which makes
verification hard. We provide constructs for user defined Invariants to support
lightweight automated verification.

Arbitrary Graph
Traversal

• Both operational and verification semantics have symbolic variables which is
non-trivial. We provide type-checking rules and prove theorems to support the
correctness of verification procedure w.r.t operational semantics.

Correctness of
Semantics

• We present the time in seconds (y-axis) to verify (timeout-300s) the standard correct abstract
transformers and disprove incorrect ones averaged over a fixed set (size-12) of parameter
values (max no. of parents and neurons in PolyExp). The percentage of the proved correct
transformers or disproved incorrect transformers (within timeout) are shown.

• We can design and verify new transformers (* marked), like the reduced product of
polyhedral and zonotope constraints.

• If an expression (𝑒) type-checks to 𝛾, under a context
(Γ, 𝜏𝑠) s.t. ⊥⊏ 𝛾 ⊏ ⊤ then under an environment
(𝐹, 𝜌,ℋ𝑐) that is consistent with the context, it evaluates
to a value (𝑣) which is of the type 𝛾′ s.t. 𝛾′ ⊑ 𝛾.

Type-checking

• If the program (𝜎) type-checks, then the symbolic
evaluation rules (verification procedure) correctly
over-approximate the concrete operational semantics.

Over-
approximation

• If the property is proved on the transformer using
bounded verification, then the DNN certifier is sound
for any DNN that is a DAG within the bounds.

Correctness

	Default Section
	Slide 1

