ConstraintFlow: A Declarative DSL for Certified Artificial Intelligence
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Standard test set accuracy is not enough.
Formal guarantees provide a more reliable metric

Formal Certification

Certification using Abstract Interpretation

Abstract Domains
1. Polyhedral — DeepPoly, CROWN, Fast-Lin, Neurify
2. Zonotopes — DeepZ, RefineZono, Al2
3. Symbolic Intervals — NeuroDiff, ReluDiff, ReluVal

Problems with Existing Libraries

() get_sparse_C function encountered index error

© Problems about refinezono and refinepoly
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Enormous unverified codebases, error-prone,
non-scalable, limited DNN architecture
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ConstraintFlow Design

e Abstract Interpretation based DNN certifiers need to maintain over-
approximation. Existing libraries can be buggy. We provide bounded automatic
verification to ensure correctness of soundness property.

Over-approximation-
based Soundness

Polyhedral
Expressions

* DNN certifiers have large polyhedral expressions which are implemented using
large arrays involving intricate pointer arithmetic. We provide these as separate
types - PolyExp

e Existing libraries are implemented using complex imperative constructs like
nested loops, making verification hard. We provide declarative, loop-free,
pointer-free DSL design.

Complex Imperative
Code

¢ Transformers need arbitrary graph traversal through the DNN, which makes
verification hard. We provide constructs for user defined Invariants to support
lightweight automated verification.

Arbitrary Graph
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* Both operational and verification semantics have symbolic variables which is
non-trivial. We provide type-checking rules and prove theorems to support the
correctness of verification procedure w.r.t operational semantics.

Correctness of
Semantics

def Shape as (Float |, Float u, PolyExp L, PolyExp U){(curr[l]<=curr) and (curr[u]>=curr)
and (curr[L]<=curr) and (curr[U]>=curr)};

func simplify_lower(Neuron n, Float c) =(c>=0) ? (c * n[l]) : (c * n[u]);
func simplify_upper(Neuron n, Float c) =(c>=0) ? (c * n[u]) : (c * n[l]);
func replace_lower(Neuron n, Float ¢) = (¢ >=0) ? (c * n[L]) : (c * n[U]);
func replace_upper(Neuron n, Float ¢) = (c>=0) ? (c * n[U]) : (c * n[L]);
func priority(Neuron n) = n[layer];

func backsubs_| (PolyExp e, Neuron n) = (e.traverse(backward, priority, true,
replace_lower) {e <= n}).map(simplify_lower);

func backsubs_u (PolyExp e, Neuron n) = (e.traverse(backward, priority, true,
replace_upper) {e >= n}).map(simplify_upper);

transformer deeppoly(curr, prev){
Affine -> (backsubs_lower(prev.dot(curr[weight]) + curr[bias], curr),

backsubs_upper(prev.dot(curr[weight]) + curr[bias], curr),
prev.dot(curr[weight]) + curr[bias], prev.dot(curr[weight]) + curr[bias]);

}

flow(forward, -priority, true, deeppoly);

TYPE-CHECKING TRAVERSE
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INVARIANT CHECK
(e, F,o,Hs,C )1l uC’
pUp = unsat(—(C' = u))

Up = Checklnduction(x : traverse(d,fcl,fCZ,fcg){e}), F,o,Hs, C)
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OPERATIONAL SEMANTICS TRAVERSE
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Bounded Automated Verification

U'<curr)A(u' = curr) A(L' < curr) A (U’ = curr)
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transformer deeppoly(curr, prev){

Relu -> prev[l] >= @ ? (prev[l], prev[ul, prev, prev) :
(prev[fu] <=0 ? (0, 0, 0, 9) : (0, prev[u], 0,
((prev[ul/(prev[u]-prev[1]))*prev)-
((prev[ul*prev[1])/(prevlul-prev[(1]))));

Operational Semantics on Concrete DNN

li,uq,L4,U4 ly,uy, Ly, Uy

¢ = gp(prev) A p(curr) A curr = ReLU(prev)

Y = gp(curr’)
¢ A (curr = curr’) = Y ? (SMT query)

In ConstraintFlow, we can code the standard DNN certifiers
in less than 20 LOCs.

For the first time, we can verify the soundness of the
existing certifiers on arbitrary DNNs that are bounded DAGs
The certifier code in ConstraintFlow can be written for any
hardware and DNN architecture and is decoupled from
domain-specific optimizations.
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Main Theorems

e |f an expression (e) type-checks to y, under a context
(I, 75) s.t. (L= y = T) then under an environment
(F, p, H.) that is consistent with the context, it evaluates
to a value (v) which is of the type y' s.t. y' E y.

Type-checking

(FITS Fe: ]/)/\(J_E)/ = T)A(F)p;}[CNF;TS) =
e, F,p, H ) U v)A(Fviy)A(Y Evy)

e If the program (o) type-checks, then the symbolic
evaluation rules (verification procedure) correctly
over-approximate the concrete operational semantics.

Over-
approximation

(tgs:DANH,~ 1) =
(5, Ts} w» (s, O) AN 8,75, H e, Hs, CI} T [v], [u] A
([v]i}[C <C [u]i}[S)

e If the property is proved on the transformer using
bounded verification, then the DNN certifier is sound
for any DNN that is a DAG within the bounds.

Correctness

We present the time in seconds (y-axis) to verify (timeout-300s) the standard correct abstract
transformers and disprove incorrect ones averaged over a fixed set (size-12) of parameter
values (max no. of parents and neurons in PolyExp). The percentage of the proved correct
transformers or disproved incorrect transformers (within timeout) are shown.

We can design and verify new transformers (* marked), like the reduced product of
polyhedral and zonotope constraints.
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