
Cost InterNetKAT: Basics of Algebraic Network Routing

Thesis submitted by

Avaljot Singh
2016CS50389

under the guidance of

Prof. Sanjiva Prasad

in partial fulfilment of the requirements

for the award of the degree of

Bachelor and Master of Technology

Department Of Computer Science and Engineering
INDIAN INSTITUTE OF TECHNOLOGY DELHI

January 2021

THESIS CERTIFICATE

This is to certify that the thesis titled Cost InterNetKAT: Basics of Algebraic Network Routing,

submitted by Avaljot Singh, to the Indian Institute of Technology Delhi for the award of the

degrees of Bachelor and Master of Technology, is a bona fide record of the research work done

by him under my supervision. The contents of this thesis, in full or in part, have not been

submitted to any other Institute or University for the award of any degree or diploma.

Prof. Sanjiva Prasad
Professor
Department of Computer Science and Engineering
Indian Institute of Technology Delhi
New Delhi 110016 INDIA

Place: New Delhi

Date: January 2021

ACKNOWLEDGEMENTS

I would like to express my sincere gratitude to my supervisor Prof. Sanjiva Prasad for his im-

mense support, guidance and motivation during this project. His impeccable knowledge of the

subject and his humility and approachable attitude has made this project a delight. I appreci-

ate all the time and effort he invested in teaching and guiding me.

This project was a joint effort and it has also been a great pleasure to work with Mankaran

Singh as a collaborator - who has taught and helped me a great deal through our stimulating

interactions. I would also like to acknowledge Arun Shankar for forming a part the basis of this

project.

I am also obliged to Prof. Subodh Sharma for his immense support in grooming me as a re-

searcher. He has been a great source of support in giving me feedback on my ideas and research

work and also, teaching me a great deal about a systematic approach to research for which I will

be ever grateful. Further, I would like to thank Prof. S Arun Kumar for his valuable insights into

this project.

Lastly, I would like to thank my family for being the backbone of round-the-clock support and

motivation.

Avaljot Singh

i

ABSTRACT

KEYWORDS: Cost-InterNetKAT ; Kleene Algebra with Tests; Cost Algebra;

NetKAT homomorphisms.

With the increasing use of SDNs in the modern world, there is also an increasing demand

of a high level programming language that can abstract away the low level details of the net-

work and help the programmer to write and verify the network policies and routing topologies.

NetKAT, a new network programming language is based on a sound and complete mathemati-

cal foundation. It is essentially a Kleene Algebra with Tests (KAT) with primitives for modifying

and testing packet headers, and encoding network topologies along with the axioms for reason-

ing about those constructs. Its applications include answering some important fundamental

questions such as reachability, waypointing etc.

However, there are several ways in which we can improve the language and its expressive-

ness. NetKAT does not talk about the costs involved in routing packets along a certain path.

Therefore, we wish to refine the semantics of NetKAT with a cost metric. We take into consid-

eration that the costs come from the underlying topology and switching costs. While the tests

and the packet modifications usually are of negligible cost, switching and routing along links

on the other hand, are actually costly operations. The costs may vary with the routing device

and the routing cost. Moreover, we wish to formulate policies that take into account the costs

along different paths. Second, it does not talk about the NetKAT homomorphisms which can

allow us to abstract out or refine certain details in one network to represent the routing de-

tails in another network. We may be able to use some of the reachability properties in the first

network to define the reachability properties in the second instead of redefining them all over

again. Third, NetKAT in its current equational theory does not allow the functionality of defin-

ing cross-network routing. Rather, it assumes a uniform network throughout in order to write

routing policies.

In this work, we try to address some of these issues and propose the appropriate equational

theory for Cost InterNetKAT.

ii

Contents

ACKNOWLEDGEMENTS i

ABSTRACT ii

LIST OF TABLES iv

LIST OF FIGURES v

ABBREVIATIONS vi

NOTATION vii

1 Introduction 1

1.1 Need for Algebraic Network Routing . 1

1.2 Existing Infrastructure and related problems . 1

1.2.1 Decentralised Network Routing . 1

1.2.2 Centralised Network Routing . 2

1.3 Network Verification and Debugging . 3

1.4 Algebraic Routing Related work . 3

1.5 Main Contributions . 4

2 NetKAT 6

2.1 Overview . 6

2.2 NetKAT Syntax and Semantics . 7

2.3 Correctness and Reachability properties . 9

2.4 Compilation . 11

2.5 Extensions . 11

3 Cost Algebra and Cost NetKAT 13

3.1 Introduction . 13

3.2 Cost Algebra: Terminology and Properties . 14

iii

3.3 Cost NetKAT - syntax and semantics . 19

3.4 Examples . 22

3.4.1 Example 1 - Hops vs. Congestion . 22

3.4.2 Example 2 - Local vs. Cumulative cost . 23

4 Axioms, Correctness and Properties of Cost NetKAT 24

4.1 Soundness . 24

4.2 Completeness . 25

4.2.1 Reduced Cost NetKAT . 25

4.2.2 Language Model, G . 27

4.2.3 Cost NetKAT Normal form . 27

4.2.4 Completeness Proof . 28

4.3 Reachability properties . 28

5 Inter-NetKAT 30

5.1 Introduction . 30

5.2 KAT homomorphisms . 30

5.3 Non-cost NetKAT homomorphisms . 31

5.3.1 Preimage . 35

5.3.2 NetKAT Refinement, Abstraction and Translation 35

5.3.3 What happens to NetKAT Automaton? . 36

5.4 Cost NetKAT homomorphisms . 37

5.4.1 Left semimodule . 38

5.4.2 Right semimodule . 39

5.5 Cost InterNetKAT . 40

5.5.1 Horizontal Composition . 41

5.6 Future Work . 41

Appendix A Soundness of Cost NetKAT 44

Appendix B Completeness of Cost NetKAT 47

Appendix C NetKAT Automata 49

List of Figures

1.1 Example Network Topology . 2

2.1 NetKAT syntax . 7

2.2 NetKAT semantics . 8

2.3 Example Network . 9

2.4 Local compilation for ASE at R . 11

3.1 Maximum congestion in the network . 17

3.2 Comparison of cost along the two paths . 18

3.3 Maximum congestion in the network . 19

3.4 Cost NetKAT syntax . 20

3.5 Cost NetKAT semantics . 21

3.6 Example network showing hops vs. congestion costs 22

3.7 Example network showing cumulative vs. global costs 23

4.1 Reduced Cost NetKAT syntax and regular interpretation 26

4.2 G(p) ⊆ I =A∗(Π ·cp)∗ ·Π . 27

5.1 Cost InterNetKAT syntax . 42

5.2 Cost InterNetKAT semantics . 43

v

ABBREVIATIONS

BGP Border Gateway Protocol

IGP Internal Gateway Protocol

EGP External Gateway Protocol

SDN Software Defied Network

DSL Domain Specific Language

KAT Kleene Algebra with Tests

ASE Abstract Switching Element

BDD Binary Decision Diagram

FDD Forwarding Decision Diagram

IITD Indian Institute of Technology, Delhi

vi

NOTATION

f Non-cost fields
c Cost fields
pk NetKAT packets
p, q NetKAT policies
cp Checkpoint
α Complete Test
π Complete Assignment
β Complete Non-cost Test
ε Complete Local cost Test
θ Complete Non-cost Assignment
κ Complete Cost Assignment
A Set of Complete tests
Π Set of Complete assignments
N Natural numbers

vii

Chapter 1

Introduction

1.1 Need for Algebraic Network Routing

The modern day internet is much more than just a graph of nodes and edges. Although orig-

inally developed as a simple graph structure, technological advances and growing needs of

connectivity and security have increased its complexity. It now has a wide variety of special

purpose devices such as routers, switches, repeaters, bridges, and many more. On one hand,

this makes it very difficult for the network operators to come up with new routing protocols or

even modify the existing ones to adjust them to their business needs and on the other hand,

the ad hoc solutions to these problems do not offer any correctness guarantees. Even the in-

dustry standard network routing protocols like BGP often lack good behaviour in the sense

that they do not offer convergence guarantees in asynchronous settings. As a result, the net-

work developers fall back to solutions like using EGP protocols like BGP for IGP purposes. All

these problems and many others have made the network outages very common. In the follow-

ing sections, we briefly describe the existing infrastructure that is used for routing the network

packets from one point in the network to another and the problems that are associated with

these existing techniques.

1.2 Existing Infrastructure and related problems

1.2.1 Decentralised Network Routing

The fundamental tool used for network communications are the routing tables. Each network

device uses its locally calculated routing table to determine the next hop for every incoming

packet. Each device shares its own routing information with its neighbours and vice versa. The

information thus received is used to update its own routing table. This decentralised way of

working out the routing information reaches a fixed point and converges under ideal condi-

tions. However, problems arise because the physical network links in the underlying topology

go down quite frequently. Further, in modern networks, various factors other than the cost due

to path length play an important role in deciding the network communications. For example,

consider the network topology in Figure 1.1 Owing to some security issues, irrespective of any

costs, C is required to route all the packets from source A to destination D and from source B to

1.2 Existing Infrastructure and related problems 2

Figure 1.1: Example Network Topology

destination E. Traditionally, such intentions are fulfilled by manually writing the correspond-

ing specifications in the configuration files of each device separately. Manually doing all the

configurations can be a very tedious task. Further, owing to human errors, there usually arise

semantic gaps between the network developer’s intent and the actual implementation. It is

difficult to translate the global intentions to local implementations. For example, it may be de-

sired that every path from a device at IIT Kanpur to IIT Bombay must pass through IIT Delhi.

But how exactly to achieve such a behaviour and what configurations are required becomes a

difficult question to answer if done manually.

1.2.2 Centralised Network Routing

Quite recently however, the advancement of Software Defined Networks (SDNs) has replaced

the decentralised way of calculating the routing information with a centralised one. The control

plane acts as the brain of the network. Taking into consideration the underlying topology and

desired network behaviour, the control plane calculates all the information that is required by

all the devices in the network to appropriately route the packets. The devices that actually

route the packets in the network form the data plane. The controller in a sense has a global

view of the network and has all the network intelligence which alleviates some of the problems

and hurdles described above. For instance, in such scenario, all the policy configurations need

to be updated at just the controller instead of doing so with all the devices in the network.

The controller sends the routing information at the devices in the data plane using protocols

written in OpenFlow [MAB+08] or P4 [BDG+14]. However, it is still a very daunting task to

directly write correct network programs at a low level of abstraction.

© 2023, Avaljot Singh

1.3 Network Verification and Debugging 3

1.3 Network Verification and Debugging

To further add to these problems, networks act like black boxes in a way. The dropping of

a packet opens many questions like when, where and how exactly was the packet dropped.

Unfortunately, one has to rely on very low level tools like traceroute or ping to debug the

networks. This debugging process is very time consuming, error prone and often inconclusive.

In fact, the network administrators are usually expected to reason about the properties of each

and every packet that can exist in the network. But this is practically impossible in a setting

where the configurations are done manually simply because of the vast size of the state space.

The IPv4 packet headers contain a minimum 160 bits and can go up to 480 bits. So, there exist

at least 2160 distinct IPv4 packet headers. So, it is difficult to establish any global properties like

“Hosts A and B must not be able to communicate with each other”. One can easily inject a packet

at source A and check whether it is able to reach the destination B using traceroute. But that

is just one packet out of total 2160 possible packets.

1.4 Algebraic Routing Related work

All in all, there are two main issues with network programming: (a) the difficulty of coming up

with new network protocols in the first place, and (b) verifying the correctness of the programs

implementing those protocols with respect to the desired properties so as to ensure the ab-

sence of any semantic gaps. In the recent past, many network researchers have tried to solve

these problems by coming up with appropriate abstractions and develop domain specific lan-

guages (DSLs) for networks and also using a strong mathematical foundations for defining the

semantics of these DSLs in order to ensure correctness properties. Following this idea, Griffin

and Sobrinho in their paper [GS05] used a high level declarative language framework to de-

fine and prove the convergence properties of routing protocols. The base algebras defining the

basic routing can be combined using a Routing Algebra Metalanguage to define new complex

routing protocols, where the convergence properties are relatively straightforward to prove.

Further, in an attempt to formalise the routing protocols across the layers of the internet ar-

chitecture stack, and model route redistribution across distinct routing protocols, Griffin and

Billings introduced the idea of using semi-modules [BG09]. This idea of algebraic composi-

tion works elegantly in a structured form of the internet routing which can be modelled using

idempotent semiring structures.

Not all the existing network protocols satisfy distributivity, an important property needed

for any semiring structure. Such protocols that do not necessarily follow this property are called

“policy rich protocols”. In fact, most of the protocols currently in use like BGP or RIR are policy

rich. Researchers have come up with certain conditions that the protocols must follow in order

to guarantee convergence. There are several factors which can be used to decide how good

© 2023, Avaljot Singh

1.5 Main Contributions 4

these conditions are. The paper [DGG18] very succinctly summarises these factors and gives a

general enough solution for the convergence guarantees for policy-rich routing protocols.

Adding to these problems, there are terms in the internet that haven’t been properly for-

malised. Similarly, there are several other diversities in the network that make them difficult to

analyse. In the paper [KKPB07], the authors attempt to model the internet’s forwarding mech-

anisms and communications in an axiomatic formulation. Based on a “leads-to” relation, they

are able to define using 4 basic axioms, fundamental communication concepts such as names,

addresses, peers, tunneling etc., as well as forwarding operations quite easily. Further this

concept is extended to include control mechanisms within a namespace and also combining

namespaces. A Hoare style formal semantics of the primitives along with the leads to relation

makes this formulation quite convincing. Further extensions of the work use temporal logic

in order to address the network changes and reconfigurations over time by introducing a tem-

poral order [ZP15]. This axiomatisation is able to address issues like IP mobility which are an

example of the ever-changing dynamic nature of the internet. Further, the security issues such

as those in TOR networks can also be modelled in this formulation.

Finally, the main concept that we build upon in this dissertation is NetKAT [AFG+14, FKM+15],

a network programming language based on Kleene Algebra with Tests (KAT). It enjoys a com-

plete and sound equational theory (with respect to the operational behaviour). According to

the abstractions in this language, the network packets are a characterised by a set of field-value

pairs (a finite set). The primitive programs can either filter the packets on the basis the value

of a particular field, or can even modify the the value of a field. Programs can also be extended

from these primitive ones either by concatenating programs using the Kleisli composition or

by taking the union of the programs. The filters from a Boolean subalgebra of the KAT. Finally,

the Kleene-star operation defines the overall network program. The NetKAT compiler converts

these abstract programs into match action tables that can be installed onto the devices in the

data plane. The next chapter briefly describes NetKAT and its equational theory.

1.5 Main Contributions

Although NetKAT provides an excellent way of writing network programs and also verifying

them, yet we are far from completely simulating the modern networks. The values of every field

in the NetKAT packets come from discrete sets. So NetKAT, in its current equational theory,

does not talk about the costs incurred in routing a packet along a particular network path,

allowing just two extremes – either reachable or unreachable. We propose to (conservatively)

incorporate costs from a suitable cost algebra, thus allowing cost-dependent policies, such as

cost-bounded reachability.

Second, NetKAT assumes a single uniform network throughout, in order to write routing

policies, and does not allow the functionality of defining cross-network routing. So, we add

© 2023, Avaljot Singh

1.5 Main Contributions 5

new functionality to NetKAT using NetKAT homomorphisms in order to allow a more layered

structure. This would also enable one to compose policies from two distinct networks. Also,

one can talk about shortest path routes from a point in one network to a point in another net-

work by composing the two network policies using semimodules.

© 2023, Avaljot Singh

Chapter 2

NetKAT

Note : Readers already familiar with NetKAT may skip this chapter

2.1 Overview

NetKAT is a Domain Specific Language for writing network programs. It is based on Kleene Al-

gebra with Tests (KAT). KATs are quite extensively studied and are known to have a sound and

complete theory along with a PSPACE decision procedure. So this makes it easy to check for

programs equivalence and also verify the NetKAT programs for specific properties like reacha-

bility, waypointing etc.

The data plane consists of a variety of switching elements like switches, routers, bridges,

gateways etc. Although these devices have a very efficient implementation with respect to

the hardware, yet they are essentially “dumb” in the sense that they do not have any built-in

domain- and configuration-specific intelligence. What all of these have in common is that they

maintain a match-action table. Whenever a packet arrives at a device, they match the packet

header with one of the entries in the match-action table, and take the corresponding action.

They can match on the basis of one or more fields. The actions consist of changing the value

of a field, or forwarding the packet to a specific port etc. This switching functionality, indepen-

dent of the type of device, is what we are the most interested in, and so we abstract all these

devices and refer to them as abstract switching elements (ASEs) as in [KKPB07].

At the level of an ASE, a network program has two fundamental functionalities: packet mod-

ification and classification based on packet headers. At a global level, one must be able to write

programs to forward the packets along a path according to a policy. NetKAT very succinctly

provides all of these abstractions. (f = v) are the primitive tests that classify the packets on the

basis of the value of a particular field. For example, a NetKAT program p ≡ (sr c = I I T D) would

drop all the packets not originating from IITD. Therefore, (f = v) form the domain specific

tests as a part of the Boolean subalgebra of the KAT (NetKAT). An assignment (f ← v) is an-

other primitive NetKAT program. It modifies a particular field of the packet header to a specific

value. For example, p ≡ (por t := 5) would change the port of any incoming packet to 5.

2.2 NetKAT Syntax and Semantics 7

Fields f ::= f1 | · · · | fk

Packets pk ::= { f1 = v1, ..., fk = vk }

History h ::= 〈pk〉 | pk :: h

Predicates a,b ::= 1 Identity

| 0 Drop

| f = n Test

| a +b Disjunction

| a.b Conjunction

| ¬a Negation

Policies p, q ::= a Filter

| f ←− n Assignment

| p +q Union

| p ·q Sequential composition

| p∗ Kleene star

| cp Checkpoint

Figure 2.1: NetKAT syntax

2.2 NetKAT Syntax and Semantics

More formally, NetKAT packets are field-value pairs. NetKAT programs are either boolean pred-

icates or policies. true,false, (f = v) form the primitive boolean predicates. +, ·,¬ represent

the usual disjunction, conjunction and negation operations respectively in thhe Boolean sub-

algebra. Policies comprise these boolean filters and primitive assignments as described ear-

lier. +, ·,∗ represent the concatenation, union, and iteration operations respectively, as in any

Kleene algebra such as regular languages..

A NetKAT packet in a way represents the current state of a network packet and contains

entire information that is required to determine its location. The current switch and the port

also form a part of the NetKAT packet header. NetKAT follows a trace semantics, i.e., NetKAT

programs actually work with packet histories. A history is defined as a list of NetKAT packets.

A cp 1 operation checkpoints a packet into this history, i.e., it just duplicates the first packet

at the front of the list. All the other programs either filter the histories based on the topmost

packet or change the field of the topmost packet, leaving all packets below the top in the history

unchanged. A NetKAT program may produce one or more histories from a given history, due

to the union operation. Therefore, a NetKAT programs maps an input history to an output set

of histories. The union operation (+) simply takes the union of the sets of histories produced

1In the original NetKAT paper, this is written as dup

© 2023, Avaljot Singh

2.2 NetKAT Syntax and Semantics 8

�p� ∈ H −→ 2H

�1�h = {h}

�0�h = {}

� f = n�(pk :: h) =
{

{pk :: h} if pk. f = n

{} otherwise

�¬a�h = {h}\(�a�h)

� f ←− n�(pk :: h) = {pk[f := n] :: h}

�p +q�h = �p�h ∪�q�h

�p.q�h = (�p�• �q�)h

where • is the Kleisli composition

�p∗�h =⋃
i

F i
p h

where F 0
p h = {h} and F i+1

p h = (�p�•F i
p)h

�cp�(pk :: h) = {pk :: (pk :: h)}

Figure 2.2: NetKAT semantics

by the two subprograms, i.e., �p + q�h = �p�h ∪ �q�h. the · operation is treated as a Kleisli

composition, and the ∗ as the iteration.

The boolean predicates very beautifully separate the local programs at each ASE. All of the

local programs can be just combined using the union operator to simulate the overall network

program p. Further, the topology, t can be encoded in a similar fashion. Finally, the complete

program can be written as (p.t)∗. For example consider the network in Fig. 2.3.

pR , dst=A·pt := 1+dst=B·pt := 2+dst=C·pt := 3

pS , dst=A·pt := 1+dst=B·pt := 1+dst=C·pt := 2

p , pR +pS

t , sw=R·pt= 1·sw :=A+
sw=R·pt= 2·sw :=A+
sw=R·pt= 3·sw := S·pt := 1+
sw= S·pt= 1·sw :=R·pt := 3+
sw= S·pt= 2·sw :=C

© 2023, Avaljot Singh

2.3 Correctness and Reachability properties 9

Figure 2.3: Example Network

pnet , (p·t)∗

In fact, one can also define complete end-to-end policies. Let’s say a network operator wants

to send each message originating at Host A to Host C check pointing at every step in the path:

p , sw=A· cp ·sw :=R·pt := 1· cp ·pt := 3· cp ·sw := S·pt := 1· cp ·pt := 2· cp ·sw :=C

2.3 Correctness and Reachability properties

Along with the standard KAT axioms, NetKAT has some additional domain-specific Packet Al-

gebra axioms as a part of its equational theory. Kindly refer to the NetKAT papers [FKM+15]

[AFG+14] for the detailed equational theory of NetKAT. Proving soundness of NetKAT relies on

set-theoretic semantics of NetKAT programs. Each program can be thought of as a relation

between NetKAT histories.

(h1,h2) ∈ [p] , h2 ∈ �p�h1

This notation simplifies proving the soundness of each of the axioms. For example, according

to one of the axioms, (f := v · f = v) ≡ (f := v). In order to prove this equivalence, it suffices

to show that ∀(h1,h2) ∈ [f := v · f = v], (h1,h2) ∈ [f := v] and vice-versa. Similarly, for each

of the axioms of the type p1 ≡ p2, proving the soundness is same as showing [p1] ⊆ [p2] and

[p2] ⊆ [p1].

Proving the completeness is a bit involved. This proof works by representing the NetKAT

programs into an equivalent canonical form. Let α and π represent the complete tests and

complete assignments respectively, i.e., a complete test is one that tests the value of each field

in the packet header, and a complete assignment assigns a value to each of the fields in the

packet header.

α, (f1 = v1)·(f2 = v2) · · · (fn = vn)

© 2023, Avaljot Singh

2.3 Correctness and Reachability properties 10

π, (f1 := v1)·(f2 := v2) · · · (fn := vn)

Let At and Pi represent the sets of complete tests and complete assignments respectively. Every

(non-complete) test can be written equivalent to a disjunction (sum) of finitely many complete

tests, and every (non-complete) assignment can be written as a sum of guarded complete as-

signments.

(x = v) ≡>· (x = v)

≡ (
∑
α∈At

α) · (x = v)

≡ ∑
α∈At

α · (x = v)

≡ ∑
α′≤x=v

α′

(2.1)

(x ← v) =>· (x ← v)

= (
∑
α∈A

α ·πα) · (x ← v)

= (
∑
α∈A

α ·πα[x←v])

(2.2)

Further, a language model is defined over canonical forms where all the complete tests in the

program are brought to the front. This set of canonical form strings is called the normalised

form or reduced string form of the NetKAT program. After converting into the normalised form

it is easy to see the completeness.

Theorem 2.3.1 (Soundness). ` p ≡ q =⇒ �p� = �q�

Theorem 2.3.2 (Completeness). �p� = �q� =⇒ ` p ≡ q

For more details on the proofs, please refer to the NetKAT papers [AFG+14, FKM+15].

With NetKAT syntax and semantics, it becomes very easy to encode and verify properties

like reachability or waypointing. The reachability of b from a can be checked by checking if p

defined below is equivalent to dropping the packet or not.

pr , a·cp·(p·t)∗·cp·b

If pr 6≡ drop, b is reachable from a.

Similarly, one can write program to verify if each path from a to b passes through c.

a·cp·(p·t ·cp)∗·b ≤ a·cp·(¬b·p·t ·cp)∗·c·(¬a·p·t ·cp)∗·b

© 2023, Avaljot Singh

2.4 Compilation 11

2.4 Compilation

The control plane has the actual network intelligence but the ASEs in the data plane just need

to know the routing tables, as determined by the control plane. So the controller must supply

them with the match-action tables Further, these tables need to be generated for each of the

ASEs separately.

On closer inspection, one may realise that all the NetKAT tests are the match fields and the

assignments are the actions in these tables. The tables for concatenation and the union can

be defined recursively. But this method of generating tables has an exponential time complex-

ity. The paper [SEFG15] describes an efficient method for compiling a NetKAT programs using

Binary Decision Diagrams (BDD) and adapting them into a similar domain specific data struc-

ture called Forwarding Decision Diagrams (FDD). The compilation pipeline first converts all

the global programs into a disjunctive union (+) of local programs using symbolic NetKAT au-

tomata. These local programs are then converted into FDDs. These FDDs are then converted

into the match-action tables. Figure 2.4 describes the FDD and the corresponding table for the

switch R in Figure 2.3

false pt := 1 pt := 2 pt := 3

dst = A

dst = B

dst = C

(a) FDD

Match Action
dst = A pt := 1
dst = B pt := 2
dst = C pt := 3

(b) Match Action table

Figure 2.4: Local compilation for ASE at R

2.5 Extensions

The abstractions provided by NetKAT provide a strong basis for network routing. There are

various extensions already proposed to make NetKAT even versatile and equip it with suffi-

cient functionality with a target of completely capturing the needs of modern networks. In this

dissertation, we propose to conservatively extend the equational theory with a suitable cost

© 2023, Avaljot Singh

2.5 Extensions 12

algebra.

A recent paper by Beckett et. al. [BGW16] extended the language by adding a linear time

(past) temporal logic (ptLTL) to NetKAT, enabling one to ask and verify the network program

properties relating to path-based queries. It combines the equational theories of LTL and

KAT along with the soundness and completeness proofs and also extends the compiler to in-

corporate the extensions. SNAP [AKG+16], Event-Driven Network Programming [MHFv16],

[BFH+17] Propane [BMM+19] are some other extensions of NetKAT in various domains. Proba-

bilistic programming is also currently gaining a lot of attention of various research labs. The de-

velopment of Probabilistic NetKAT [FKM+16, SKF+17, SKK+19] at Cornell, ProFoundNet project

at UCL, and [VS19] are some examples.

Further, NetKAT programs inherently assume that all the ASEs in the underlying technol-

ogy are fully programmable. However, this is not always the case. Some of the legacy devices

have a fixed functionality which create an obstacle for the network developers to write arbi-

trary NetKAT programs. It does not sound an economically feasible solution to simply replace

all such devices with the programmable ones. This problem has opened another line of re-

search to use heuristic guided search to translate arbitrary NetKAT programs into the ones that

can work with the devices in the underlying topology [ave21].

© 2023, Avaljot Singh

Chapter 3

Cost Algebra and Cost NetKAT

3.1 Introduction

Normally there are multiple paths between any two nodes in a network. One can route mes-

sages through any one of them to reach the final destination. Most routing protocols followed

in networking deploy the most fundamental tie-breaker criteria, that is the shortest path al-

gorithm. Traditionally, for all the ASEs in the network, the distance vector routing protocols

determine the distance of the node from all other nodes in the network. This information is

then used to determine the next hop table for each node based on the final destination. Be it a

decentralised way or a centralised way as in SDNs, most of the protocols focus on finding the

single source shortest tree for each node in the graph. These costs need not be just the number

of hops or the geometric distance, but can be a complex tuple structure cost with many fields.

The famous Dijkstra’s shortest path algorithm [Dij59] is a solution to this problem. The

algorithm proceeds by maintaining two sets of nodes – one for which the shortest path has

been discovered and the other for the remaining nodes. This creates a recursive problem of a

smaller size, thus reaching a fixed point after a finite number of iterations. [HM12] shows a very

clean relation of this algorithm with Kleene Algebra with Tests and derives the same algorithm

and also proves its correctness in a purely algebraic way. So it seems only natural to use KATs

as the fundamental algebra for implementing the network routing.

The original NetKAT theory defines each point in the state space as a complete test. So each

action (complete or not) just defines a transition from one point to another. A NetKAT policy,

defines edges between these states in the state space. In a matrix representation, consider a

matrix of size n ×n, where n is the size of the set of all complete tests, i.e., n = |At |. The matrix

entry M(i , j) = 1 represents that according the NetKAT policy, point j is reachable from i by

some trajectory, whereas M(i , j) = 0 represents otherwise.

However, NetKAT in its current semantics does not use any notion of the costs incurred due

to forwarding the packets along any path. The values of all the fields in a NetKAT packet header

are drawn from discrete sets that do not follow any ordering. For example, an IP address a1

can neither be considered less than or even greater than another IP address a2. There simply

is no ordering between the elements of these sets, and therefore no notion such as “shortest

path” using which we can compare prioritise trajectories according to a policy. Further, the

assignment operations in NetKAT simply replace the original value of a field with a new value.

3.2 Cost Algebra: Terminology and Properties 14

However, in network routing policies, just talking about reachability is not enough. “Reach-

able” or “unreachable” are two extremes of a complete spectrum of values in a suitable alge-

braic/ordering structure. What is required in order to simulate real world networks is a cost

associated with the transition from one point in the state space to another. In other words, the

matrix entry M(i , j) should represent the cost associated along the trajectory from i to j . In

order to associate any notion of costs, we first need to develop a cost algebra general enough

to represent costs of any nature and complexity, but conservatively extend our existing NetKAT

theory.

3.2 Cost Algebra: Terminology and Properties

A cost algebra is an idempotent semiring C = 〈Σ,∨,◦,1,e〉 where the costs are the elements

drawn from Σ.

The ∨ operation is a commutative, associative function that maps the elements of Σ×Σ to

Σ.

∀c1,c2 ∈Σ, (c1∨c2) = (c2∨c1)

∀c1,c2,c3 ∈Σ, (c1∨c2)∨c3 = c1∨ (c2∨c3)

∀c ∈Σ, c ∨1 = c = 1∨c

We can define a partial ordering relation (¹) amongst the elements of Σ: c ¹ d if cc ∨d =
d . Equivalently, we write (c º d) if (c ∨d = c), where c º d means that c is a better or more

preferred cost than d .

∀c ∈Σ, c º 1

The continuation function, ◦ is an associative function that mapsΣ×Σ toΣ. e is the identity

element of the continuation function.

∀c1,c2,c3 ∈Σ, (c1 ◦ c2) ◦ c3 = c1 ◦ (c2 ◦ c3)

∀c ∈Σ, c ◦ e = c = e ◦ c

Further, ◦ distributes over ∨. 1 is an annihilator for ◦.

∀c1,c2,c3 ∈Σ, c1 ◦ (c2∨c3) = (c1 ◦ c2)∨ (c1 ◦ c3)

∀c ∈Σ, 1 ◦ c = 1 = c ◦1

We see that the 1 element, i.e., the identity element of ∨ is the least preferred cost, whereas

the identity of ◦ e is the most preferred. In a cost algebra for networks, we will require that

© 2023, Avaljot Singh

3.2 Cost Algebra: Terminology and Properties 15

the cost of any trajectory from a point i to itself is e. Further, ◦ is a monotonically contracting

function.

∀c, d ∈Σ, c ∨ (c ◦ d) = c

In nutshell, C = 〈Σ,∨,◦,1,e〉 is a valid cost algebra if it satisfies the following properties:

1. 〈Σ,◦,e〉 is a monoid

2. 〈Σ,∨,1〉 is a commutative monoid

3. ◦ distributes over ∨
4. e is the annihilator of ∨
5. x∨x = x

6. ◦ is a monotonic function over the elements of Σ

The most common example of this cost algebra is the N = 〈N,min, +,∞,0〉 algebra. The

elements of this algebra are the drawn from the set of natural numbers,N. The elements of this

set ordered with the well known algebraic ordering with <= as the algebraic ordering relation.

n1 <= n2 ≡ n1 º n2. Further, 0 and ∞ are the minimum and maximum elements. The ∞ can

in fact be replaced by any practically suitable large enough value such that any message with a

cost greater than this upper bound will just be dropped. In case of networks packets, most of

the header fields have a maximum width allowed. Let the maximum length allowed be b bits.

So, the upper bound can be set to 2b .

1. 〈N,+,0〉 is a monoid.
(a) 0 is the identity element. ∀n ∈N, (n+0) = n.

(b) + is associative. ∀n1,n2,n3 ∈N, (n1+n2)+n3 = n1+ (n2+n3).

2. 〈N,min,∞〉 is a commutative monoid.
(a) min is a commutative function. ∀n1,n2 ∈N, min(n1,n2) =min(n2,n1).

(b) ∞ is the identity element. ∀n ∈N, min(n,∞) = n.

(c) min is associative. ∀n1,n2,n3 ∈N, min(min(n1, n2),n3) =min(n1,min(n2, n3)).

3. + distributes over min. ∀n1,n2,n3 ∈N, n1+min(n1, n2) =min(n1+n2, n1+n3).

4. 0 acts as the annihilator of min. ∀n ∈N, min(n,0) = 0.

5. ∀n ∈N, min(n,n) = n

6. + is a monotonic function. ∀n,n′ ∈N, min(n,n + n′) = n.

© 2023, Avaljot Singh

3.2 Cost Algebra: Terminology and Properties 16

So, N = 〈N,min, +,∞,0〉 is a valid cost algebra. Many cost fields in the packet actually use

N as the underlying algebra. For example, geometrical distance between two hosts, total num-

ber of hops, timestamp of the packet etc. A path with lesser number of hops usually preferred.

Also, a path that covers a lesser geometrical distance between the source and the destination is

a natural choice and is the solution of the Dijkstra’s shortest path algorithm. Further, if a packet

exceeds a specific value of timestamp, it is dropped from the network, and therefore, needs to

be resent by the source.

Another example of this cost algebra is M = 〈N,min, max,∞,0〉
1. 〈N,max,0〉 is a monoid.

(a) 0 is the identity element. ∀n ∈N, max(n, 0) = n.

(b) max is associative. ∀n1,n2,n3 ∈N, max(max(n1, n2),n3) =max(n1,max(n2, n3)).

2. 〈N,min,∞〉 is a commutative monoid.
(a) min is a commutative function. ∀n1,n2 ∈N, min(n1,n2) =min(n2,n1).

(b) ∞ is the identity element. ∀n ∈N, min(n,∞) = n.

(c) min is associative. ∀n1,n2,n3 ∈N, min(min(n1, n2),n3) =min(n1,min(n2, n3)).

3. maxdistributes overmin. ∀n1,n2,n3 ∈N, max(n1, min(n1, n2)) =min(max(n1, n2), max(n1, n3).

4. 0 acts as the annihilator of min. ∀n ∈N, min(n,0) = 0.

5. ∀n ∈N, min(n,n) = n

6. max is a monotonic function. ∀n,n′ ∈N, min(n, max(n, n′)) = n.

Therefore, M = 〈N,min, max,∞,0〉 is a valid cost algebra.

Consider the network in the Figure 3.1 where the hosts A and B wish to establish a connec-

tion through the path that is the least prone to dropping the packets. A broadcasts a packet

with 0 initial cost into the network to find the minimum cost path. Each link in the network has

a value associated that indicates the current congestion. In such a situation, one would want

to minimize the maximum congestion along any link in the path.

There can be two paths that can send packets between A and B, namely ÚPQR and ÛPT SR.

A packet will travel through each of the two paths and the congestion cost field follows the M

algebra. The link QR in the first path, ÚPQR offers the maximum congestion equal to 10 and acts

as the bottleneck of the path. Similarly, the bottleneck in the second path ÛPT SR is the link TS

which offers a congestion equal to 7. Figure 3.2 shows the packet cost at each step in the two

paths. Finally, B receives both of the two packets, and the connection is set up with the path

with lower net cost, i.e., ÛPT SR.

Now consider the example in Figure 3.3. A network packet header may contain many fields

- all of which follow varied cost algebras with different continuation functions or different sig-

natures. Consider a packet header with two fields - c1 and c2 - one which follow N1 as the cost

© 2023, Avaljot Singh

3.2 Cost Algebra: Terminology and Properties 17

Figure 3.1: Maximum congestion in the network

algebra and the other which follow N2. At some point in time, a packet reaches a bifurcation

and it has two choices of paths to the same final destination. The packet must take a path with

the lower overall cost. But it may not always be possible to compare the two costs. In the fol-

lowing example in Figure 3.3, a packet at P can either take a path with two hops and a total path

length equal to 7, or it can choose the other path with a single path but a path length equal

to 16. In this case, both the costs are pairs of number of hops and the total path length. This

example shows that it is not always compulsory for the two elements to be ordered.

We extend the algebra to a Residuated Kleene Lattice with Tests [].

1. A meet operation ∧.

2. Residual \,/

3. Kleene-star operation ∗

x∧y =∨
{z : x º z and y º z}

x\y =∨
{z : y º x ◦ z}

x/y =∨
{z : x º z ◦ y}

x0 = e xn = xn−1 ◦x x∗ = ∨
i∈N

xi

• The ∨ operation gives the lowest upper bound of two elements in Σ. The ∧ on the other
had, is the greatest lower bound.

• It is important in network communications about the weakest preconditions that will
lead a packet to its final destination. For example, for a packet originating at host A des-
tined to reach the final destination at host B in a network,α\β gives the initial values that

© 2023, Avaljot Singh

3.2 Cost Algebra: Terminology and Properties 18

(a) Message through path ÚPQR

(b) Message through path ÛPT SR

Figure 3.2: Comparison of cost along the two paths

© 2023, Avaljot Singh

3.3 Cost NetKAT - syntax and semantics 19

Figure 3.3: Maximum congestion in the network

must be installed in the packet header at A, where α is the condition of the packet being
at A, while β is the condition of the packet being at B.
Similarly, x/y gives the all the initial values of the packets that will final reach x by the
program y.

• Kleene-star (∗) is the usual iteration operation (also used in original NetKAT).

3.3 Cost NetKAT - syntax and semantics

Using the cost algebra defined so far, we conservatively extend the syntax and semantics of

NetKAT. The values of all the fields of the original NetKAT packet were drawn from a discrete

set. Let’s call all those as the non-cost fields. In Cost NetKAT, we add some fields in the packet

header whose values are elements of a cost algebra. Any new cost incurred to these fields won’t

just replace the original value but will increase the cost defined by the continuation operation.

Further, instead of checking for exact equality of these cost fields, it is more suitable to check

for a preference over these cost fields. A network developer may be concerned about the cu-

mulative cost incurred by the packet in the entire starting from its source, or they may just care

about the cost incurred in the current network. So, instead of having an atomic cost field, we

maintain a pair as the cost field. The first element of the pair is the local cost incurred by the

packet, while the second element of the field is the cumulative cost incurred starting from its

creation. The local cost element must be reset to e at every check-pointing operation (cp). Fur-

ther, whenever a new cost is incurred (c�σ), both the elements of the cost field must increase

by the same amount. Figures 3.4 and 3.5 present the syntax and semantics of Cost NetKAT.

There is a subtle change in the semantics of the union (+) operator. To understand the

change, consider the following example

p1 ≡ (hops� 5)

p2 ≡ (hops� 3)

© 2023, Avaljot Singh

3.3 Cost NetKAT - syntax and semantics 20

Non-cost Fields f ::= f1 | · · · | fk

Cost Fields c ::= c1 | · · · | cl

Packets pk ::= { f1 = v1, · · · , fk = vk , c1 =σ1, · · ·cl =σl }

History h ::= 〈pk〉 | pk :: h

Predicates a,b ::= 1 Identity

| 0 Drop

| f = n Non-cost Test

| c lo ºσ Local cost Test

| ccu ºσ Cumulative cost Test

| a +b Disjunction

| a.b Conjunction

| ¬a Negation

Policies p, q ::= a Filter

| f ←− n Modification

| c�σ Increment

| p +q Union

| p ·q Sequential composition

| p∗ Kleene star

| cp Checkpoint

Figure 3.4: Cost NetKAT syntax

p ≡ p1 +p2

q1 ≡ (hops� 5) · (length� 30)

q2 ≡ (hops� 3) · (length� 50)

q ≡ q1 +q2

Clearly, the program p1 would increase the hop count of the top packet of any input history by

3 units. Similarly, the program p2 would increase the hop count by 5 units. Now if the elements

3, and 5 were not ordered, the program p would simply produce an output set of two histories -

one which incurred 3 hop counts and the other with 5. In this case however, since the elements

are ordered, one would not expect the output to contain the packet with a larger cost. So in

fact, p ≡ p2.

In order to mathematically define the semantics of], we need to lift the semantics of the

preference relation from a packet header to a trace of packet headers (if it is not already de-

fined). Two packet histories are ordered by the preference relation º if all the individual ele-

© 2023, Avaljot Singh

3.3 Cost NetKAT - syntax and semantics 21

�p� ∈ H −→ 2H

�1�h = {h}

�0�h = {}

� f = n�(pk :: h) =
{

{pk :: h} if pk. f = n

{} otherwise

�c lo ºσ�(pk :: h) =
{

{pk :: h} if pk.c lo ºσ
{} otherwise

�ccu ºσ�(pk :: h) =
{

{pk :: h} if pk.ccu ºσ
{} otherwise

�¬a�h = {h}\(�a�h)

� f ← n�(pk :: h) = {pk[f := n] :: h}

�c�σ�(pk :: h) = {pk[c lo ◦σ][ccu ◦σ] :: h}

�p +q�h = �p�h]�q�h

�p.q�h = (�p�• �q�)h

where • is the Kleisli composition

�p∗�h =⊎
i

F i
p h

where F 0
p h = {h} and F i+1

p h = (�p�•F i
p)h

�cp�(pk :: h) = {pk[c lo := e] :: (pk :: h)}

Figure 3.5: Cost NetKAT semantics

ments of both the histories follow the same ordering and they have the same length.

Let s = 〈pk1 :: pk2 :: · :: pkn〉

Let t = 〈pk ′
1 :: pk ′

2 :: · :: pk ′
n〉

s º t iff ∀i , pki º pk ′
i

Using this, now we can define the] operation as follows:

S1]S2 = {x|x ∈ S1 ∪S2 and 6 ∃y ∈ S1 ∪S2 s.t. y º x}

So, in the examples shown above, �p1�h] �p2�h = �p2�h. However, �q1�h] �q2�h = �q1�h ∪
�q2�h, if the elements of (hops, length) are not always ordered.

The next section presents some examples for a better understanding of the policies that one

© 2023, Avaljot Singh

3.4 Examples 22

can write using the new syntax and semantics of Cost NetKAT.

3.4 Examples

For all the examples in this section, the costs are natural numbers drawn from the set N. The

preference relation is the algebraic ordering between natural numbers, i.e., ∀n1,n2 ∈N (n1 <=
n2) ≡ (n1 º n2). Also, ¬(c <= n) is simply written as (c > n)

3.4.1 Example 1 - Hops vs. Congestion

Consider the example in Figure 3.6. Any packet that reaches the ASE at P, it can follow two

different paths - a direct path (ÙPB) or a longer path (ÜPQRSB). However, the path ÙPB suffers

from a larger congestion value. So, the ASE at P sends the packet through this direct link only

if the packet has already travelled a longer path than a threshold value. Otherwise, the packet

must be routed through the longer path which has a maximum congestion equal to 3.

Figure 3.6: Example network showing hops vs. congestion costs

t , sw=P ·pt= 2 ·sw←Q ·pt← 1 ·hops� 1 ·cong� 2+
sw=P ·pt= 3 ·sw←B ·pt← 1 ·hops� 1 ·cong� 16+
sw=Q ·pt= 2 ·sw←R ·pt← 1 ·hops� 1 ·cong� 2+
sw=R ·pt= 2 ·sw← S ·pt← 1 ·hops� 1 ·cong� 2+
sw= S ·pt= 2 ·sw←B ·pt← 2 ·hops� 1 ·cong� 3

pP , sw=P ·pt= 1 ·hopslo <= 8 ·dst=B ·pt← 2+
sw=P ·pt= 1 ·hopslo > 8 ·dst=B ·pt← 3

© 2023, Avaljot Singh

3.4 Examples 23

pQ , sw=Q ·pt= 1 ·dst=B ·pt← 2

pR , sw=R ·pt= 1 ·dst=B ·pt← 2

pS , sw= S ·pt= 1 ·dst=B ·pt← 2

p , pP +pQ +pR +pS

pnet , (p · t)∗

3.4.2 Example 2 - Local vs. Cumulative cost

In this example, we illustrate a case highlighting the difference between local and cumulative

cost. At every check-pointing operation (cp), the local cost of each cost field is reset. In Figure

3.7, the ASE at R sends a packet to B only if it has less than a certain number of hops in its own

local network. For this to happen, as soon as the packet is received at P, its local cost is reset.

The switch at P however, allows only those packets in its network which have not travelled in

the entire network for more than a certain time limit.

pP , sw=P ·pt= 1 · (type= ssh) · (timecu <= 30) · cp ·pt← 2 ·hops� 1+
sw=P ·pt= 1 · (type= http) · (timecu <= 30) · cp ·pt← 3 ·hops� 1

pR , sw=R ·pt= 1 · (type= ssh) · (hopslo <= 5) ·pt← 3

p , pP +pR +pS

pnet , (p · t)∗

Figure 3.7: Example network showing cumulative vs. global costs

© 2023, Avaljot Singh

Chapter 4

Axioms, Correctness and Properties of Cost NetKAT

4.1 Soundness

The original NetKAT programs follow some axioms other than the ones presented by the KAT

theory. These are the domain specific axioms called the packet algebra axioms. According to

[BCG17], these form the client theory, T . In this chapter, we present some additional packet

algebra axioms that arise due to the addition of cost fields. All the earlier axioms still hold for

the non-cost fields. These axioms are of the form p1 ≡ p2 presenting the equivalence of two or

more Cost NetKAT programs. As done for original NetKAT axioms, we prove the soundness of

these axioms by using a relational semantics. This is isomorphic to the trace semantics defines

earlier.

(h1,h2) ∈ [p] ⇐⇒ h2 ∈ �p�h1

Following are the additional Cost NetKAT axioms with their soundness proofs.

Axiom 4.1.1.

(c?1 ºσ1) · (c•2 ºσ2) ≡ (c•2 ºσ2) · (c?1 ºσ1)

(c1�σ1) · (c2�σ2) ≡ (c2�σ2) · (c1�σ1)

(c1�σ1) · (c•2 ºσ2) ≡ (c•2 ºσ2) · (c1�σ1)

(c�σ) · (f = n) ≡ (f = n) · (c�σ)

(c�σ) · (f ← n) ≡ (f ← n) · (c�σ)

(c ºσ) · (f = n) ≡ (f = n) · (c�σ)

(c ºσ) · (f ← n) ≡ (f ← n) · (c�σ)

?,• ∈ {lo,cu}

Axiom 4.1.2.

(ccu ºσ) · (c lo ºσ) ≡ ccu ºσ ≡ (c lo ºσ) · (ccu ºσ)

Axiom 4.1.3.

If σ1 ºσ2, then

(ccu ºσ1)+ (ccu ºσ2) ≡ (ccu ºσ2)

(c lo ºσ1)+ (c l o ºσ2) ≡ (c lo ºσ2)

4.2 Completeness 25

Axiom 4.1.4.

If σ1 ºσ2, then

(ccu ºσ1) · (ccu ºσ2) ≡ (ccu ºσ1)

(c l o ºσ1) · (c l o ºσ2) ≡ (c lo ºσ1)

Axiom 4.1.5.

If σ1 ºσ2, then

(c�σ1)+ (c�σ2) ≡ (c�σ1)

Axiom 4.1.6.

(c�σ1) · (c�σ2) ≡ (c� (σ1 ◦σ2))

Axiom 4.1.7.

(ccu ºσ1) · (c�σ2) ≤ (c�σ2) · (ccu º (σ1 ◦σ2))

(c l o ºσ1) · (c�σ2) ≤ (c�σ2) · (c lo º (σ1 ◦σ2))

Axiom 4.1.8.

(c�σ1); (c lo ºσ2) ≡ (c lo ºσ2/σ1); (c�σ1)

(c�σ1); (ccu ºσ2) ≡ (ccu ºσ2/σ1); (c�σ1)

Based on the soundness of the axioms above, we state the soundness theorem.

Theorem 4.1.1. If ` p ≡ q, then �p� = �q�

The proof of the soundness of this theorem can be found in Appendix A

4.2 Completeness

The completeness proof of Cost NetKAT with respect to its equational theory is inspired from

the completeness proofs in [AFG+14], [BGW16], [BCG17]. This proof proceeds in four steps -

defining reduced Cost NetKAT, developing a language model for reduced Cost NetKAT, convert-

ing Cost NetAT policies into a normal form, and finally, using the completeness of the reduced

form to achieve the Cost NetKAT completeness result

4.2.1 Reduced Cost NetKAT

In reduced Cost NetKAT, every assignment is a complete assignment, ad every test is a com-

plete test. Let F = { f1, · · · , fk ,c1, · · ·cl } denote the sets of fields Cost NetKAT. In the context of

Cost NetKAT, a primitive test in B is a literal bi where bi ≡ (fi = v) or ci ºσ, and a complete test

© 2023, Avaljot Singh

4.2 Completeness 26

is of the form (f1 = v1) · . . . · (fk = vk) · (c1 º σ1) · . . . · (cl º σl) where f1, · · · fk ,c1, · · · ,cl are all the

fields in the packet header in some arbitrary but fixed order. If field xi can assume ni distinct

values, then there are exactly n1 × . . .×n(k+l) different complete tests in Cost NetKAT boolean

subalgebra B. These complete tests constitute the atoms of the Boolean algebra B because

they are minimal nonzero elements of B generated by the tests. Let A denote the set of com-

plete tests of B. Similarly, in NetKAT, a primitive assignment is of the form fi ← v or c j � σ,

and a complete assignment is of the form f1 ← v1 ·. . .· fk ← vk ·c1�σ1 ·. . .·cl �σl . LetΠ denote

the set of all complete assignments.

Syntax

Complete non-cost assignment θ, f1 ← v1 · . . . · fk ← vk

Complete cost assignment κ, c1�σ1 · . . . · cl �σl

Complete assignment π, θ ·κ

Complete non-cost test β, f1 = v1 · . . . · fk = vk

Complete local cost test ε, c l o
1 ºσ1 · . . . · c lo

l ºσl

Complete cumulative cost test δ, ccu
1 ºσ1 · . . . · ccu

l ºσl

complete cost test α,β ·ε ·δ

p, q ::=π
| α
| p +q

| p.q

| p∗

| cp

(a) Reduced Cost NetKAT syntax

R(π) = {π}

R(α) = {α}

R(p +q) = R(p)]R(q)

R(p.q) = R(p).R(q)

R(cp) = {cp}

R(p∗) = ⊎
n≥0

R(pn)

(b) R(p) ⊆ (Π+A+cp)∗

Figure 4.1: Reduced Cost NetKAT syntax and regular interpretation

Reduced Cost NetKAT axioms

Before we introduce the axioms, we introduce some new notation based on the elements of A
and Π

If θ = f1 ← v1 · . . . · fk ← vk , then, βθ , f1 = v1 · . . . · fk = vk

If β= f1 = v1 · . . . · fk = vk , then, θβ, f1 ← v1 · . . . · fk ← vk

© 2023, Avaljot Singh

4.2 Completeness 27

If δ= ccu
1 ºσ1 · . . . · ccu

l ºσl , then, εδ, c l o
1 ºσ1 · . . . · c lo

l ºσl

ε∞, c lo
1 º∞· . . . · c lo

l º∞

δ∞, ccu
1 º∞· . . . · ccu

l º∞

κ0, c1� 0 · . . . · cl � 0

If π= θ ·κ, then, απ,βθ ·ε∞ ·δ∞
If α=β ·ε ·δ, then, πα, θβ ·κ0

Following are axioms relating to A and Π

Axiom 4.2.1.

θ ≡ θ ·βθ κ≡ κ ·ε∞ ·δ∞ π≡π ·απ
β≡β ·θβ ε≡ ε ·κ0 δ≡ δ ·κ0 α≡α ·πα

Axiom 4.2.2.

cp · (β ·ε ·δ) ≡ (β ·εδ ·δ) ·cp

4.2.2 Language Model, G

G(π) = {β ·ε∞ ·δ∞ ·π|∀β}

G(α) = {α ·πα}

G(p +q) =G(p)]G(q)

G(p.q) =G(p)¦G(q)

G(cp) = {β ·ε∞ ·δ∞ ·θβ ·κ0 ·cp ·θβ ·κ0|∀β}

G(p∗) = ⊎
n≥0

G(pn)

Figure 4.2: G(p) ⊆ I =A∗(Π ·cp)∗ ·Π

Lemma 4.2.1. For all policies p, �p� =⊎
x∈G(p)�x�

Lemma 4.2.2. If x, y ∈ I , then �x� = �y� iff x = y

Lemma 4.2.3. For all policies p, q, �p� = �q� iff G(p) =G(q)

4.2.3 Cost NetKAT Normal form

Definition 4.2.1. A cost NetKAT policy p is in normal form if R(p) ∈ I . A policy p is normalisable

if it is provably equivalent to a policy in normal form.

© 2023, Avaljot Singh

4.3 Reachability properties 28

Lemma 4.2.4. Every cost-NetKAT policy p is normalisable

4.2.4 Completeness Proof

Lemma 4.2.5. If R(p) ∈ I , then R(p) =G(p)

The proofs of all the above lemmas can be found in Appendix B

Theorem 4.2.1. If �p� = �q�, then ` p ≡ q

Proof. Let p̂, q̂ be the normal forms of p, q respectively.

` p ≡ p̂, ` q ≡ q̂

⇒�p� = �p̂�, �q� = �q̂�

⇒ �p̂� = �q̂�

⇒G(p̂) =G(q̂)

G(p̂) = R(p̂),G(q̂) = R(q̂)

⇒ R(p̂) = R(q̂)

Since R(p̂),R(q̂) are regular sets, ` p̂ ≡ q̂ Also, ` p ≡ p̂, ` q ≡ q̂

∴` p ≡ q

4.3 Reachability properties

We only make an incremental change to state a new reachability test for the cost NetKAT poli-

cies.

Definition 4.3.1. We say b is reachable from a with a cost at least as good as cost predicate c if

and only if there exists a trace

〈pk1, · · · , pkn〉 ∈ �cp · (p · t ·cp)∗�

such that �a�〈pkn〉 = {pkn} and �b · c�〈pk1〉 = {pk1}

Theorem 4.3.1. For non-cost predicates a and b, cost predicate c, policy p, and topology t, a ·cp ·
(p · t ·cp)∗ ·b · c 6≡ 0, if and only if b is reachable from a with a cost at least as good as c.

© 2023, Avaljot Singh

4.3 Reachability properties 29

Proof. Translate the cost NetKAT equation into the language model:

a ·cp · (p · t ·cp)∗ ·b · c 6≡ 0

⇒∃α,πn , · · · ,π1 s.t., α ·πn ·cp · · ·cp ·π1 ∈G(a ·cp · (p · t ·cp)∗ ·b · c)

Also translate each term in the semantic definition of reachability into the language model:

〈pk1, · · · , pkn〉 ∈ �cp · (p · t ·cp)∗�,

�a�〈pkn〉 = {pkn}

�b · c�〈pk1〉 = {pk1}

⇒∃π′
m , · · · ,π′

1 s.t.,

απ′
m
·π′

m ·cp · · ·cp ·π′
1 ∈G(cp · (p · t ·cp)∗)

απ′
m
∈G(a) and

απ′
1
∈G(b · c)

To prove soundness, let α=απ′
m

and m = n to show that if

α ·πn ·cp · · ·cp ·π1 ∈G(a ·cp · (p · t ·cp)∗ ·b · c)

then,

α ·π′
m ·cp · · ·cp ·π′

1 ∈G(cp · (p · t ·cp)∗)

Completeness proofs proceeds in the same manner.

Similarly, following is a new way-pointing theorem

Definition 4.3.2. We say w is a waypoint from a to b, if and only if, for all histories 〈pk1, · · · , pkn〉 ∈
�cp·(p ·t ·cp)∗� where �a�〈pkn〉 = {pkn} and �b�〈pk1〉 = {pk1}, there exists a pkx ∈ 〈pk1, · · · , pkn〉
such that:

• �w�〈pkx〉 = {pkx}, and

• �b�〈pki 〉 = {} for all 1 < i < x, and

• �a�〈pk j 〉 = {} for all x < j < n

Theorem 4.3.2. For non-cost predicates a, b, and w, and cost predicate c, a ·cp ·(p · t ·cp)∗ ·b ·c ≤
a ·cp · (¬b ·p · t ·cp)∗ ·w · (¬a ·p · t ·cp)∗ ·b if and only if all packets from a that reach b with a

cost at least as good as c, are waypointed through w.

© 2023, Avaljot Singh

Chapter 5

Inter-NetKAT

This work in this section builds on the work already done by Arun Shankar and Sanjiva Prasad.

5.1 Introduction

NetKAT in its current equational theory assumes a uniform network throughout the packet

journey. However, there are many scenarios where a packet travels through many different

networks in order to reach its final destination. In the path, an ASE (a router) may add an

additional packet header on the top of the packet or may even pop some part of it. In fact, ac-

cording to the traditional OSI model, a network packet travels across the vertical layers, namely,

application layer, network layer, data link layer, etc. At the interface of each of these layers, an

additional header is installed on the packet and then it is sent forward. After reaching the final

destination, these headers are removed at the same corresponding interfaces.

NetKAT on the other hand, assumes packet to be composed of a fixed number of fields

and that the packet travels through the same network throughout its journey. In this work, we

try to extend the NetKAT syntax to accommodate this functionality of changing the network

in between. With this addition, we will be able to treat the interfaces of this vertical stack as

nothing but some ASEs in the network. We do this by using NetKAT homomorphisms to define

semimodule operations which map the packets in one network to packets in the other. In the

following section, we first build the theory only for non-cost fields in NetKAT.

5.2 KAT homomorphisms

Let K ,K ′ be Kleene algebras with tests, with B,B′ respectively being their boolean subalge-

bras. A KAT-homomorphism is a Kleene algebra homomorphism h : K →K ′ whose restriction

to B is a boolean algebra homomorphism to B′:

h(1) = 1′ h(x · y) = h(x) ·′ h(y)

h(0) = 0′ h(x + y) = h(x)+′ h(y)

h(x) = h(x)
′

h(x∗) = h(x)∗
′

where the unprimed and primed constants and operations on the left and the right side of the

equations refer to the KAT operations in K ,K ′ respectively. Kleene algebras with tests and

5.3 Non-cost NetKAT homomorphisms 31

KAT-homomorphisms form a category.

5.3 Non-cost NetKAT homomorphisms

The extension of KAT-homomorphisms to NetKAT requires a brief discussion. We first consider

the properties of NetKAT homomorphisms on the boolean subalgebras. Let h : B →B′ be a

homomorphism between the boolean sub-algebras of the respective NetKAT structures.

Let F = {x1, x2, ..., xk } and F ′ = {x ′
1, x ′

2, ..., x ′
m} denote the sets of fields in the respective

NetKAT structures. In the context of NetKAT, a primitive test in B is a literal bi where bi ≡
(xi = v), and a complete test is of the form (x1 = v1i1) · . . . · (xk = vkik) where x1, ..., xk are all the

fields in the packet header in some arbitrary but fixed order. If field xi can assume ni distinct

values, then there are exactly n1 × . . .×nk different complete tests in NetKAT boolean subalge-

bra B. These complete tests constitute the atoms of the Boolean algebra B because they are

minimal nonzero elements of B generated by the tests. Similarly, if x ′
i can assume n′

i distinct

values, then there are exactly n′
1 × . . .×n′

m different complete tests in NetKAT algebra B′. Let A

and A′ denote the set of complete tests of B and B′ respectively.

A NetKAT homomorphism maps each complete test in A to a test in B′, or equivalently to a

subset of complete tests in At′.

NetKAT homomorphisms on complete tests. NetKAT-homomorphisms, being KAT-homomorphisms,

must satisfy two additional properties: exclusivity and exhaustiveness.

Proposition 5.3.1 (Exclusivity). If ai and a j are two distinct primitive tests on the same field,

h(ai ·a j) = 0.

Here ai , a j will be of the form x = vi and x = v j respectively for some field x, with vi 6= v j .

From Packet Axiom PA-CONTRA, (x = vi)·(x = v j) ≡ 0 if vi 6= v j . Thus, for h to be a valid NetKAT

homomorphism, h(ai ·a j) = 0.

Corollary 5.3.1. For any two different complete tests α1,α2 ∈A,h(α1 ·α2) = 0.

In particular, two different complete tests, which must differ in at least one particular field,

cannot be mapped to the same non-zero element.

Proposition 5.3.2 (Exhaustiveness). If {v1, v2, v3, ..., vn} is the set of values that a field x can as-

sume, then, h(
∑n

i=1 x = vi) = 1.

From the packet algebra axiom PA-MATCH-ALL,
∑n

i=1(x = vi) = 1. Thus, for h to be a valid

NetKAT homomorphism, exhaustiveness must hold.

© 2023, Avaljot Singh

5.3 Non-cost NetKAT homomorphisms 32

Corollary 5.3.2. Let A be the set of complete tests in B. Then h(
∑
α∈Aα) = 1.

From the corollaries 5.3.1 and 5.3.2, it is clear that a homomorphism maps each point in A

to a partition (set of points) of At′, such that the union is exhaustive. In a matrix interpretation,

the homomorphic image of a point (a matrix with a single 1 on the main diagonal) is a set of

points along the main diagonal. We will talk more about this in the sequel.

If for complete test α ∈ A, h(α) = ∑l
i βi , for some β1, . . . ,βl ∈ A′, then β ∈ A′ ≤ h(α) iff β is

one of the summands βi .

NetKAT homomorphisms on Tests. Talking only about the mapping of complete tests is not

sufficient; we also need to specify what happens to tests that are not complete. Recall that every

primitive test b in B is equivalent to a sum of complete tests: b ≡∑
α∈A≤bα.

Suppose b ≡ (x = v) Let A o [x = v]
∆= {α ∈A | α · (x = v) 6= 0}. Note that in each α′ ∈A o [x = v],

the value for field x = v .

(x = v) ≡ 1 · (x = v)

≡ (
∑
α∈A

α) · (x = v)

≡ ∑
α∈A

α · (x = v)

≡ ∑
α′∈Ao[x=v]

α′

≡ ∑
α′≤x=v

α′

(5.1)

Observe that α ∈A≤ (x = v) iff α′ ∈A o [x = v].

We define the mapping for a primitive test b ∈B as follows:

h(b) = h(
∑
α≤b

α) = ∑
α≤b

h(α) (5.2)

In a matrix interpretation, the homomorphic image of a test (a matrix with some 1’s on the

main diagonal) is a matrix with 1’s along the main diagonal which is obtained as the sum of the

image matrices, where no two share a 1 in any position.

NetKAT homomorphisms for assignments. Now we characterise the homomorphic map-

ping for assignments in K . Let P,P′ denote the complete assignments in K ,K ′. In NetKAT,

a primitive assignment is of the form xi ← v , and a complete assignment is of the form x1 ←
v1i1 ; · · ·; xk ← vkik . In shorthand notation, we write the complete tests and assignments as~x =~v
and~x ←~v respectively.

As we see that the mapping that we defined for NetKAT complete and primitive tests, qual-

© 2023, Avaljot Singh

5.3 Non-cost NetKAT homomorphisms 33

ifies to be a valid NetKAT homomprhism. However, for a valid homomorphism, the condition

that h(x · y) = h(x) ·h(y), makes such a mapping in the case of complete and primitive assign-

ments very restrictive. So instead, we allow a weaker condition for mapping the assignments

in one network to programs in another network, i.e., g (x ·y) ≤ g (x) ·g (y). Since we have already

established that the mapping we require satisfies to be a valid homomorphism for the boolean

subalgebra, the mapping g induces the same homomorphism h for the strongest post condi-

tions of the NetKAT assignments and programs in general. The strongest post-condition of a

NetKAT program is defined as follows.

In NetKAT, the complete tests and complete assignments are in 1-1 correspondence accord-

ing to the values~v . So, if α is an atom (complete test), the corresponding complete assignment

is denoted by πα and if π is a complete assignment, then the corresponding complete test is

denoted by απ.

Definition 5.3.1. For a NetKAT program p, such that the normal form of the program is p ≡
Σiαi ·πi · · · ·cp ·π′

i , the the strongest post-condition of p is defined as sp(p),Σiαπ′
i

We will write πβ ≤ h(πα) if πβ is one of the summands. In a matrix interpretation, the ho-

momorphic image of a complete assignment is a matrix with 1’s in each column indexed by an

atom in the corresponding image of the complete test.

In general, let h(π) = p1+p2+·· ·+pn , where each pi is of the formα·π1·cp · · ·cp·π j . Since in

NetKAT, πα is an assignment that will bring the packet to the point α, then the homomorphic

image of πα must also bring the packet finally to h(α). This can also be stated and derived

mathematically as follows.

Lemma 5.3.1. If h(πα) = Σpi , where each pi is of the form pi = Σαi ·πi ·cp · · ·cp ·π′
i , then for

each pi , απ′
i
≤ h(α)

Proof.

πα =πα ·α

⇒ h(πα) = h(πα ·α) ≤ h(πα) ·h(α)

Assume p ≤ h(πα) s.t., p =α′ ·π′
1 ·cp · · ·cp ·π′

n where π′
n 6≤ h(α)

⇒ h(p) · (α) ≡ 0

⇒ h(π) 6≤ h(πα) ·h(α)

This contradicts the original statement.

Also, α ·πα ≡ α. This means that if a packet is already at the point α, the we do not need

any assignment operation to bring it to α. Thus we can posit the following requirement on

homomorphic images of a complete test:

© 2023, Avaljot Singh

5.3 Non-cost NetKAT homomorphisms 34

Lemma 5.3.2. If h(α) =∑l
i=1βi then

∑l
i=1πβi ≤ h(πα)

Proof.

h(α) ·′ h(πα) = (
l∑

i=1
βi) ·′ (

l∑
j=1

πβ j)

=
l∑

i=1
(βi ·′ (

l∑
j=1

πβ j))

≥
l∑

i=1
(βi ·′πβi)

=
l∑

i=1
βi

= h(α)

= h(α ·πα)

(5.3)

Once we have defined how homomorphisms behave for complete tests, we can automat-

ically extend the definition for the primitive assignments. The primitive assignments in K

can be written as a sum of complete tests followed by complete assignments. Let (x ← v) be a

primitive assignment. Then,

(x ← v) = 1 · (x ← v)

= (
∑
α∈At

α ·πα) · (x ← v)

= (
∑
α∈At

α ·πα[x←v])

(5.4)

where πα[x←v] is πα with the assignment to x replaced by x ← v . Therefore,

h(x ← v) = h(
∑
α∈At

α ·πα[x←v]).

Finally, we complete the definition of NetKAT homomorphisms on cp:

h(cp) = cp

Let L ⊆A ·Π · (cp ·Π)∗ be a (regular) set of reduced strings. Each string x ∈ L is of the form α ·
r0 ·cp·r1 · · ·cp·rn ,n ≥ 0, whereα ∈A, and each ri ∈Π. Using the properties of homomorphisms,

let us define

h(x), {y ≡β · s0 ·cp · s1 · · ·cp · sn | β ∈ h(α), ∀i : si ∈ h(ri)}

© 2023, Avaljot Singh

5.3 Non-cost NetKAT homomorphisms 35

At the language level, this lifts naturally to the following:

h(L) = ⋃
x∈L

h(x).

5.3.1 Preimage

We deduce from the Exclusivity and Exhaustiveness properties that any NetKAT homomor-

phism h from A creates a partition in the target set of atoms A′. Therefore, it is quite clear that

the cardinality of A′ has to be greater than that of A. Thus the observation that each atom in

B′ has exactly one inverse mapping in B. This inverse mapping may or may not itself be a

homomorphism depending on the cardinalities of A and A′.

Since complete assignments in NetKAT are in one-to-one correspondence with complete

tests, for each the complete assignment in P′, there is exactly one inverse mapping to a com-

plete assignment in P. This leads us to the definition of the preimage h−1

Definition 5.3.2.

h−1(β) =α iff β≤ h(α)

Proposition 5.3.3. h−1(β) is unique.

Proof. Let α1 and α2 be the preimages of β under h.

⇒ h(α1) =β= h(α2)

⇒ h(α1).h(α2) =β

This violates the Exclusivity property.

Note that however, there can be more than one atoms in K ′ that might have the same

preimage.

In the packet algebra, this is quite intuitive, in the sense that for every NetKAT network packet

in K ′, we are certain about the field values that it would have been in the original NetKAT

network K .

5.3.2 NetKAT Refinement, Abstraction and Translation

The Exclusivity property and the cardinalities of the sets A and A′ lead us to three cases of

NetKAT homomorphisms.

© 2023, Avaljot Singh

5.3 Non-cost NetKAT homomorphisms 36

NetKAT Refinement Let us consider the first case where the cardinality of the set A is smaller

than that of At′, i.e.,

|A| < |A′|

Exclusivity says that each complete test of B is mapped to a complete test in B′ or to a union

(sum) of more than one complete tests in such a way that two distinct complete tests in B are

mapped to disjoint sets of compete tests in B′, i.e., h(α1).h(α2) = 0 if α1 6= α2. In other words,

if h(α1) = βi1 +βi2 + ...+βik , and h(α2) = β j1 +β j2 + ...+β jl , then the sets {βi1 ,βi2 , ...,βik } and

{β j1 ,β j2 , ...,β jl } are disjoint. The homomorphism h partitions At′. Since the cardinality of At′

is larger than A, there must be at least one complete test in A that is mapped to a union of

complete tests in A′.

∃α′ ∈A : h(α′) =
l∑

i=1
β ji , l > 1

In such a case, the inverse mapping from A′ to A will not be a homomorphism. This is because

if the inverse exists, then ∀β ∈ {β j1 , ...,β jl },h−1(β) =α′. However, Exclusivity does not allow this.

NetKAT Abstraction From the discussion above on NetKAT refinements, it is clear that the

inverse mapping of a NetKAT Refinement cannot be a homomorphism. Therefore, abstractions

cannot be NetKAT homomorphisms.

NetKAT Translation The last situation is when the cardinalities of sets A and A′ are equal,

i.e., |A| = |A′|. In such a case, each complete test of A will be mapped to exactly one distinct

complete test in A′. In this case, the homomorphism will be a total function, and therefore the

inverse mapping from A′ to A will also be a homomorphism. This is an interesting situation

with many applications and some special properties.

Therefore, NetKAT translation naturally induces a valid inverse homomorphism given by

the preimage h−1 as defined earlier. NetKAT Refinements, however, do not induce any such

inverse.

Proposition 5.3.4. h−1 is a valid NetKAT homomorphism iff |A| = |A′|

5.3.3 What happens to NetKAT Automaton?

Theorem 5.3.1. Let h : K → K ′ be a Non-cost NetKAT homomorphism. Let Σ,B ,A,Π denote

the set of actions, tests, complete tests, and complete assignments respectively in K , and the

corresponding components of K ′ be Σ′,B ′,A’,Π′.
If L ⊆A ·Π · (cp ·Π)∗ is regular, then so is its image h(L).

Theorem 5.3.2. If h(L) ⊆A′ ·Π′ · (cp ·Π′)∗ is regular, then so its pre-image L .

© 2023, Avaljot Singh

5.4 Cost NetKAT homomorphisms 37

Refer to C for the proofs of the above theorems.

Theorem 5.3.3. Given a NetKAT homomorphism h,

1. If L1,L2 ⊆A ·Π · (cp ·Π)∗ such that L1 ⊆ L2, then h(L1) ⊆ h(L2)

2. If L1,L2 ⊆A ·Π · (cp ·Π)∗ such that L1 ∩L2 =φ, then h(L1)∩h(L2) =φ
3. If L1,L2 ⊆A ·Π · (cp ·Π)∗ such that h(L1) ⊆ h(L2), then L1 ⊆ L2

Note however that h−1(L1) and h−1(L2) need not be disjoint even if L1 and L2 are disjoint,

i.e., L1 ∩L2 =φ 6⇒ h−1(L1)∩h−1(L2) =φ. This holds only when h is a NetKAT Translation.

5.4 Cost NetKAT homomorphisms

Homomorphisms for Cost NetKAT can be defined in a similar fashion as non-cost NetKAT.

There are some major differences between both the homomorphisms:

• Monotonicity: The homomorphism for cost part must be a monotonic funcion.

If c1 º c2, then hc (c1) º hc (c2)

• For any two complete tests in the cost part of NetKAT, ai · a j 6≡ 0. Hence, exclusivity de-
fined in the previous section does not hold.

The preimage can be generalised to the following:

Definition 5.4.1.

h−1(z) =∨
{x | z ≤ h(x)}

h−1(z1 + z2) = h−1(z1)h−1(z2)

x1 ≤ x2 ⇒ h−1(x1) ≤ h−1(x2) (5.5)

x ≤ h(h−1(x)) (5.6)

x = h−1(h(x)) (5.7)

This makes h a Galvois Insertion

Finally, in Cost InterNetKAT the homomorphism has two parts - a) non-cost homomorphism,

b) cost homomorphism. Composing two networks is best done using semimodules.

© 2023, Avaljot Singh

5.4 Cost NetKAT homomorphisms 38

5.4.1 Left semimodule

Left semimodule is an operator that maps the elements from N1 ×N2 to N2

B : N1 ×N2 → N2

The left semimodule must satisfy the following properties:

1. xB (y1 + y2) = xB y1 +xB y2

2. (x1 +x2)B y = x1B y +x2B y

3. (x1 · x2)B y = x1B (x2B y)

4. 1B y = y

5. 0B y = 0 = xB0

In our case, we define the left-semimodule as :

xB y , h(x) · y

Since the mapping h is a homomorphism on the strngest postconditions and the weakest pre-

conditions of the network programs, and satisfies only a weaker property in general, this semi-

module consequently satisfies a weaker property of associativity, i.e., (x1 ·x2)B y ≤ x1B(x2B y)

Proof.

xB (y1 + y2) = h(x) · (y1 + y2)

= h(x) · y1 +h(x) · y2

= xB y1 +xB y2

(x1 +x2)B y = h(x1 +x2) · y

= (h(x1)+h(x2)) · y

= h(x1)B y +h(x2)B y

= x1B y +x2B y

(x1 · x2)B y = h(x1 · x2) · y

≤ h(x1) ·h(x2) · y

= h(x1) · (x2B y)

= x1B (x2B y)

© 2023, Avaljot Singh

5.4 Cost NetKAT homomorphisms 39

1B y = h(1) · y

= 1 · y

= y

0B y = h(0) · y

= 0 · y

= 0

xB0 = h(x) ·0

= 0

5.4.2 Right semimodule

Right semimodule is an operator that maps the elements from N1 ×N2 to N1

C : N1 ×N2 → N1

The right semimodule must satisfy the following properties:

1. xC (y1 + y2) = xC y1 +xC y2

2. (x1 +x2)C y = x1C y +x2C y

3. (x1 · x2)C y = x1C (x2C y)

4. xC1 = x

5. 0C y = 0 = xC0

In our case, we define the left-semimodule only for the boolean subalgebra as :

xB y , x ·h−1(y)

where x, y are the NetKAT policies. For a NetKAT test, h−1(y) is the preimage of y . For an

assignment, h−1(p), h−1(πsp(p))

© 2023, Avaljot Singh

5.5 Cost InterNetKAT 40

Proof.

xC (y1 + y2) = x ·h−1(y1 + y2)

= x · (h−1(y1)+h−1(y2))

= xCh−1(y1)+xCh−1(y2)

= xC y1 +xC y2

(x1 +x2)C y = (x1 +x2) ·h−1(y)

= x1 ·h−1(y)+x2 ·h−1(y)

= x1C y +x2C y

(x1 · x2)B y = (x1 ·x2) ·h−1(y)

= x1 · (x2 ·h−1(y))

= x1 · (x2C y)

= x1C (x2C y)

xC1 = x ·h−1(1)

= x ·1

= x

0C y = 0 ·h−1(y)

= 0

xC0 = x ·h−1(0)

= x ·0

= 0

5.5 Cost InterNetKAT

The problem with the current version of NetKAT is that it lets the programmer define policies

within one network, i.e., the set of the header fields remain fixed. However, present internet is

composed various Autonomous Networks with their own policies and protocols. Some may use

IP protocol while other may just use Ethernet protocol for routing packets from one host to the

© 2023, Avaljot Singh

5.6 Future Work 41

other. The signature of the packet headers and the values are therefore decided according to

the protocol in which they operate. An IPv4 packet has a completely different header from that

of a IPv6 packet. So, NetKAT program written in a network cannot route messages to another

network in its current design. For two separate networks, two separate NetKAT programs will

be written, however, there is no way to compose them to write one unified program and as a

result, in no way can the packets be exchanged reliably between two networks.

This brings us to defining Cost InterNetKAT, where we can write programs that can send

messages from one network to the other by changing the set of packet header fields. There are

two different ways in which one can think of composing two NetKAT programs. One is the hor-

izontal composition and the second is the vertical composition. In the horizontal composition,

a packet simply jumps from one network to another. For example, a message generated in Net-

work N1 can be sent to a host in adjacent Network N2 by jumping from N1 to N2 somewhere

in the path. In case of vertical composition, the message source and destination are both in

the same network, but the packet needs to travel through some other network to reach the fi-

nal destination. For example, in the layered structure, a packet at the Network layer at Host A

reaches Network layer of Host B, but in the middle, it travels through the physical layer.

5.5.1 Horizontal Composition

For horizontal composition, we just need a mapping m, which is a valid homomorphism for

the boolean subalgebra of the KAT. changes the network of the packet. The semantics now

operate not on the list of histories which we call as the Trace. i.e., �p� ∈ T −→ 2T. Figures 5.1 and

5.2 show the syntax for Cost InterNetKAT.

5.6 Future Work

• Proving the correctness of Horizontal Composition

• Finding solution to vertical composition.

© 2023, Avaljot Singh

5.6 Future Work 42

Non-cost Fields f ::= f1 | · · · | fk

Cost Fields c ::= c1 | · · · | cl

Packets pk ::= { f1 = v1, · · · , fk = vk , c1 =σ1, · · ·cl =σl }

History h ::= 〈pk〉 | pk :: h

Trace t ::= {|h|} | {|h , t |}
Mapping m

Predicates a,b ::= 1 Identity

| 0 Drop

| f = n Non-cost Test

| c l o ºσ Local cost Test

| ccu ºσ Cumulative cost Test

| a +b Disjunction

| a.b Conjunction

| ¬a Negation

Policies p, q ::= a Filter

| f ←− n Modification

| c�σ Increment

| p +q Union

| p ·q Sequential composition

| p m q Jump

| p∗ Kleene star

| cp Checkpoint

Figure 5.1: Cost InterNetKAT syntax

© 2023, Avaljot Singh

5.6 Future Work 43

�p� ∈ T −→ 2T

�1�t = {t }

�0�t = {}

� f = n�{|(pk :: h) , t |} =
{

{ {|(pk :: h) , t |} } if pk. f = n

{} otherwise

�c l o ºσ�{|(pk :: h) , t |} =
{

{ {|(pk :: h) , t |} } if pk.c l o ºσ
{} otherwise

�ccu ºσ�{|(pk :: h) , t |} =
{

{ {|(pk :: h) , t |} } if pk.ccu ºσ
{} otherwise

�¬a�t = {t }\(�a�t)

� f ←− n�{|(pk :: h) , t |} = { {|(pk[c lo ◦σ][ccu ◦σ] :: h) , t |} }

�c�σ�{|(pk :: h) , t |} = { {|(pk[f := n] :: h) , t |} }

�p +q�t = �p�t]�q�t

�p.q�t = (�p�• �q�)t

where • is the Kleisli composition

�p m q�{|(pk :: h) , t |} =⋃
{ {|(pk ′) , (pk :: h) , t |} }

where pk ′ ∈ m(pk)

�p∗�t =⊎
i

F i
p t

where F 0
p t = {t } and F i+1

p t = (�p�•F i
p)t

�cp�{|(pk :: h) , t |} = { {|(pk[c lo := e] :: pk :: h) , t |} }

Figure 5.2: Cost InterNetKAT semantics

© 2023, Avaljot Singh

Appendix A

Soundness of Cost NetKAT

Axiom A.0.1.

(c?1 ºσ1) · (c•2 ºσ2) ≡ (c•2 ºσ2) · (c?1 ºσ1)

(c1�σ1) · (c2�σ2) ≡ (c2�σ2) · (c1�σ1)

(c1�σ1) · (c•2 ºσ2) ≡ (c•2 ºσ2) · (c1�σ1)

(c�σ) · (f = n) ≡ (f = n) · (c�σ)

(c�σ) · (f ← n) ≡ (f ← n) · (c�σ)

(c ºσ) · (f = n) ≡ (f = n) · (c�σ)

(c ºσ) · (f ← n) ≡ (f ← n) · (c�σ)

?,• ∈ {lo,cu}

Proof. The order of two cost assignments or cost filters does not matter if it concerns two dif-

ferent cost fields.

Axiom A.0.2.

(ccu ºσ) · (c lo ºσ) ≡ ccu ºσ ≡ (c l o ºσ) · (ccu ºσ)

Proof. This axiom uses the fact that the cumulative cost and the local cost increase by the same

amount whenever a new cost is incurred. Also, on a check point operation (cp), the local cost is

reset, while the cumulative cost remains unchanged. So, the cumulative cost is always greater

than the local cost, i.e., c lo º ccu

Let (pk :: h, pk :: h) ∈ [ccu º m]

⇒ pk.ccu º m

Also, c l o º ccu

⇒ pk.c l o ºσ

(pk :: h, pk :: h) ∈ [(ccu ºσ) · (c l o ºσ)]

(pk :: h, pk :: h) ∈ [(c lo ºσ) · (ccu ºσ)]

The other directions can be proved in a similar fashion.

45

Axiom A.0.3.

If σ1 ºσ2, then

(ccu ºσ1)+ (ccu ºσ2) ≡ (ccu ºσ2)

(c lo ºσ1)+ (c l o ºσ2) ≡ (c lo ºσ2)

Proof.

Let (pk :: h, pk :: h) ∈ [ccu ºσ2]

⇒ pk.ccu ºσ2

Also, σ1 ºσ2

⇒ pk.ccu ºσ1

⇒ (pk :: h, pk :: h) ∈ [ccu ºσ1]

⇒ (pk :: h, pk :: h) ∈ [(ccu ºσ1)+ (ccu ºσ2)]

The other direction can be proved in a similar fashion.

Axiom A.0.4.

If σ1 ºσ2, then

(ccu ºσ1) · (ccu ºσ2) ≡ (ccu ºσ1)

(c l o ºσ1) · (c l o ºσ2) ≡ (c lo ºσ1)

Proof.

Let (pk :: h, pk :: h) ∈ [ccu ºσ1]

⇒ pk.ccu ºσ1

Also, σ1 ºσ2

⇒ pk.ccu ºσ2

⇒ (pk :: h, pk :: h) ∈ [ccu ºσ2]

⇒ (pk :: h, pk :: h) ∈ [(ccu ºσ1) · (ccu ºσ2)]

The other direction can be proved in a similar fashion.

Axiom A.0.5.

If σ1 ºσ2, then

(c�σ1)+ (c�σ2) ≡ (c�σ1)

© 2023, Avaljot Singh

46

Proof. If it is known that the only difference between p1 and p2 is regarding the cost incurred,

and p1 is strictly better program than p2 in terms of cost, then p1 +p2 ≡ p1

Axiom A.0.6.

(c�σ1) · (c�σ2) ≡ (c� (σ1 ◦σ2))

Proof. Trivial.

Axiom A.0.7.

(ccu ºσ1) · (c�σ2) ≤ (c�σ2) · (ccu º (σ1 ◦σ2))

(c lo ºσ1) · (c�σ2) ≤ (c�σ2) · (c lo º (σ1 ◦σ2))

Proof.

Let (pk :: h, pk ′ :: h) ∈ [(ccu ºσ1) · (c�σ2)]

⇒ pk.ccu ºσ1

⇒ pk ′.ccu ºσ1 ◦σ2

⇒ (pk :: h, pk ′ :: h) ∈ [(c�σ2) · (ccu º (σ1 ◦σ2))]

Axiom A.0.8.

(c�σ1); (c lo ºσ2) ≡ (c l o ºσ2/σ1); (c�σ1)

(c�σ1); (ccu ºσ2) ≡ (ccu ºσ2/σ1); (c�σ1)

Proof. By the definition of Residuals. This is an important axiom that will be used in the com-

pleteness proof. Let’s refer to this axiom as Push-back.

© 2023, Avaljot Singh

Appendix B

Completeness of Cost NetKAT

Lemma B.0.1. For all policies p, �p� =⊎
x∈G(p)�x�

Proof. By structural induction on p.

Base cases:

�π� = �∑
β

β ·ε∞ ·δ∞ ·π� = ⋃
x∈G(π)

�x� = ⊎
x∈G(π)

�x�

�α� = �α ·πα� =
⊎

x∈G(α)
�x�

�cp� = �∑
β

β ·ε∞ ·δ∞ ·θβ ·κ0 ·cp ·θβ ·κ0� =
⋃

x∈G(cp)
�x� = ⊎

x∈G(cp)
�x�

Induction steps:

�p +q� = �p�]�q�
= (

⊎
x∈G(p)

�x�)] (
⊎

x∈G(q)
�x�)

= ⊎
x∈G(p)]G(q)

�x�

= ⊎
x∈G(p+q)

�x�

�p ·q� = �p�• �q�
= (

⊎
x∈G(p)

�x�)• (
⊎

y∈G(q)
�y�)

= ⊎
x∈G(p)

⊎
y∈G(q)

�x�• �y�

= ⊎
x∈G(p)

⊎
y∈G(q)

�x · y�

= ⊎
x∈G(p)

⊎
y∈G(q)

�x ¦ y�

= ⊎
z∈G(p·q)

�z�

�p∗� = ⊎
n≥0

�pn� = ⊎
n≥0

⊎
x∈G(pn)

�x� = ⊎
x∈]n≥0G(pn)

�x� = ⊎
x∈G(p∗)

�x�

Lemma B.0.2. If x, y ∈ I , then �x� = �y� iff x = y

48

Proof. Trivial

Lemma B.0.3. For all policies p, q, �p� = �q� iff G(p) =G(q)

Proof. Reverse direction:

�p� = ⊎
x∈G(p)

�x� = ⊎
x∈G(q)

�x� = �q�

Forward direction:

�p� = �q�⇒ ⊎
x∈G(p)

�x� = ⊎
y∈G(q)

�y�

⇒∀h, (
⊎

x∈G(p)
�x�h = ⊎

y∈G(q)
�y�h)

⇒∀h∀x ∈G(p)(�x�h ⊆ ⊎
y∈G(q)

�y�h)

⇒∀h∀x ∈G(p)∃y ∈G(q)(�x�h ⊆ ⊎
y∈G(q)

�y�h)

⇒∀h∀x ∈G(p)∃y ∈G(q)(x = y)

⇒G(p) ⊆G(q)

Similarly, G(q) ⊆G(p). Therefore, G(p) =G(q)

Lemma B.0.4. Every cost-NetKAT policy p is normalisable

Proof. Base cases:

f ← n ≡Σβ ·ε∞ ·δ∞ ·θ′β ·κ0

c�σ≡Σβ ·ε∞ ·δ∞ ·θ′β ·κσ
cp≡Σβ ·ε∞ ·δ∞ ·θβ ·κ0 ·cp ·θβ ·κ0

f = n ≡Σβ′ ·ε∞ ·δ∞ ·θβ′ ·κ0

c l o ºσ≡Σβ ·ε′c ·δ∞ ·θβ ·κ0

ccu ºσ≡Σβ ·ε′c ·δ′c ·θβ ·κ0

The induction steps are quite complicated, one can refer to [BCG17] for a deeper insight as to

how to convert the cost NetKAT policies to a normal form.

Lemma B.0.5. If R(p) ∈ I , then R(p) =G(p)

Proof. Let R(p) ⊆ I . Since G(x) = {x} for x ∈ I ,

G(p) = ⊎
x∈R(p)

G(x) = ⊎
x∈R(p)

{x} = R(p)

© 2023, Avaljot Singh

Appendix C

NetKAT Automata

Theorem C.0.1. Let h : K → K ′ be a Non-cost NetKAT homomorphism. Let Σ,B ,A,Π denote

the set of actions, tests, complete tests, and complete assignments respectively in K , and the

corresponding components of K ′ be Σ′,B ′,A’,Π′.
If L ⊆A ·Π · (cp ·Π)∗ is regular, then so is its image h(L).

Proof. Since L is regular, there is a deterministic NetKAT automaton A = 〈S, s,δαβ,εαβ,Accept〉
recognising it. A is a NetKAT coalgebra with a distinguished start state s ∈ S,δαβ : S → S is a

continuation map, and εαβ : S → 2 is the observation map. Inputs to the automaton are the

reduced strings in the set N = A ·Π · (cp ·Π)∗ consisting of strings of the form α ·π0 · cp ·π1 ·
cp · · ·cp ·πn for some n ≥ 0. Acceptance is determined by a predicate Accept : S×N → 2 defined

co-inductively:

Accept(t ,α ·πβ ·cp · x) =Accept(δαβ,βx)

Accept(t ,απβ) = εαβ(t)

A reduced string x ∈ N is accepted by A iff Accept(s, x). Create a new automaton

A ′ = 〈S, s,δ′αβ,ε′αβ,Accept′〉

for h(L) as follows. The set of states and the start state are the same as in A . δ′
αβ

: S → S is

the continuation map, and ε′
αβ

: S → 2 is the observation map. Define δ′
αβ

,ε′
αβ

and Accept′ as

follows (note that since the inverses α−1
h ’s are unique atoms in A, this gives us a deterministic

automaton):

δ′αβ(t) = δh−1(α)h−1(β)

ε′αβ(t) = εh−1(α)h−1(β)

We must now prove that L(A ′) = h(L(A)). The input to A ′ are reduced strings x ′ of the set

N ′ =A′ ·Π′ · (cp ·Π′)∗. It suffices to prove that Accept′(s, x ′) =Accept(s,h−1(x ′)) for all x ′ ∈ N ′.
The proof is by induction on the number of checkpoints in x ′.

50

Base case: x =απβ ∈ N . Then, x ′ =α′πβ′ ∈ N ′, where α′ ≤ h(α), and β′ ≤ h(β).

Accept′(t , x ′) =Accept′(t ,α′πβ′)

= ε′α′β′(t)

= εαβ(t)

=Accept(t ,απβ)

=Accept(t ,h−1(x ′))

(C.1)

Induction hypothesis: Assume Accept′(t , x ′) =Accept(t ,h−1(x ′)) if x ′ has n cp for n ≥ 0

Induction case: x =α·πβcpx1 where x1 has n cp. Then, x ′ ≤ h(x) is of the formα′ ·πβ′ ·cp·x ′
1,

where x ′
1 ≤ h(x1) has n cp, and α′ ≤ h(α) and β′ ≤ h(β)

Accept′(t , x ′) =Accept′(t ,α′πβ′cpx ′
1)

=Accept′(δ′α′β′(t), x ′
1)

=Accept′(δαβ(t), x ′
1)

=Accept(δαβ(t), x1)

=Accept(t ,απβcpx1)

=Accept(t , x)

=Accept(t ,h−1(x ′))

(C.2)

Since Accept′(t , x ′) = Accept(t ,h−1(x ′)) for all t ∈ S, it is specifically so for the distinguished

start state s ∈ S, i.e., Accept′(s, x ′) = Accept(s,h−1(x ′)) for all x ′ ∈ N ′. In other words, L(A ′) =
h(L(A))

Theorem C.0.2. If h(L) ⊆A′ ·Π′ · (cp ·Π′)∗ is regular, then so its pre-image L .

Proof. Since h(L) is regular, there is a deterministic NetKAT automaton A ′ = 〈S, s,δ′
αβ

,ε′
αβ

,Accept〉
recognising it. δ′

α′β′ : S → S is a continuation map, and εα′β′ : S → 2 is the observation map.

Here, α′,β′ ∈ At′. Construct a non-deterministic automaton A = 〈S, s,δαβ,εαβ,Accept〉 with

state space S, start state s, and continuation , and observation maps δαβ : S → 2S and εαβ : S → 2

defined as follows:

δαβ(t) = {δ′α′β′(t) |α′ ≤ h(α),β′ ≤ h(β)}

εαβ(t) = ∨
α′≤h(α),β′≤h(β)

ε′α′β′(t)

where t ∈ S. Determinization is effected because there might be multiple atoms α′ in K ′ s.t.

α′ ≤ h(α). Acceptance is determined by the Accept predicate, exactly as done previously. It is

© 2023, Avaljot Singh

51

straightforward to show by induction (on the number of dups) that the language accepted by

this automaton is L .

Base case: x =α′πβ′ ∈ N ′. Then, x =απβ ∈ N , where α′ ≤ h(α), and β′ ≤ h(β).

Accept(t , x) =Accept(t ,απβ)

= εαβ(t)

= ∨
α′≤h(α),β′≤h(β)

ε′α′β′(t)

= ∨
α′≤h(α),β′≤h(β)

Accept′(t ,α′πβ′)

=Accept′(t ,h(x))

(C.3)

Induction hypothesis: Assume Accept(t , x) =Accept′(t ,h(x)) if x has n cp for n ≥ 0

Induction case: x ′ = α′ ·πβ′ · cp · x ′
1 where x ′

1 has n cp. Then, x : x ′ ≤ h(x) is of the form

α ·πβ ·cp · x1, where x ′
1 ≤ h(x1) has n cp, and α′ ≤ h(α) and β′ ≤ h(β)

Accept(t , x) =Accept(t ,α ·πβ ·cp ·x1)

=Accept(δαβ(t), x1)

= ∨
α′≤h(α),β′≤h(β)

Accept(δ′α′β′(t), x1)

= ∨
α′≤h(α),β′≤h(β)

Accept′(δ′α′β′(t),h(x1))

= ∨
α′≤h(α),β′≤h(β)

Accept′(t),α′ ·πβ′ ·cp ·h(x1))

=Accept′(t ,h(α) ·h(πβ) ·cp ·h(x1))

=Accept′(t ,h(x))

(C.4)

Therefore, L(A) =L

© 2023, Avaljot Singh

Bibliography

[AFG+14] Carolyn Jane Anderson, Nate Foster, Arjun Guha, Jean-Baptiste Jeannin, Dexter
Kozen, Cole Schlesinger, and David Walker. Netkat: semantic foundations for net-
works. In Suresh Jagannathan and Peter Sewell, editors, The 41st Annual ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL ’14,
San Diego, CA, USA, January 20-21, 2014, pages 113–126. ACM, 2014.

[AKG+16] Mina Tahmasbi Arashloo, Yaron Koral, Michael Greenberg, Jennifer Rexford, and
David Walker. Snap: Stateful network-wide abstractions for packet processing. In
Proceedings of the 2016 ACM SIGCOMM Conference, SIGCOMM ’16, page 29–43,
New York, NY, USA, 2016. Association for Computing Machinery.

[ave21] Avenir: Managing data plane diversity with control plane synthesis. In 18th
USENIX Symposium on Networked Systems Design and Implementation (NSDI 21).
USENIX Association, April 2021.

[BCG17] Ryan Beckett, Eric Campbell, and Michael Greenberg. Kleene Algebra Modulo The-
ories. arXiv e-prints, page arXiv:1707.02894, July 2017.

[BDG+14] Pat Bosshart, Dan Daly, Glen Gibb, Martin Izzard, Nick McKeown, Jennifer Rexford,
Cole Schlesinger, Dan Talayco, Amin Vahdat, George Varghese, and David Walker.
P4: Programming protocol-independent packet processors. SIGCOMM Comput.
Commun. Rev., 44(3):87–95, July 2014.

[BFH+17] S. Basu, N. Foster, H. Hojjat, P. Palacharla, C. Skalka, and X. Wang. Life on the
edge: Unraveling policies into configurations. In 2017 ACM/IEEE Symposium on
Architectures for Networking and Communications Systems (ANCS), pages 178–190,
2017.

[BG09] John N. Billings and Timothy G. Griffin. A model of internet routing using semi-
modules. In Rudolf Berghammer, Ali Jaoua, and Bernhard Möller, editors, Rela-
tions and Kleene Algebra in Computer Science, 11th International Conference on
Relational Methods in Computer Science, RelMiCS 2009, and 6th International Con-
ference on Applications of Kleene Algebra, AKA 2009, Doha, Qatar, November 1-5,
2009. Proceedings, volume 5827 of Lecture Notes in Computer Science, pages 29–43.
Springer, 2009.

[BGW16] Ryan Beckett, Michael Greenberg, and David Walker. Temporal netkat. In Chandra
Krintz and Emery Berger, editors, Proceedings of the 37th ACM SIGPLAN Conference
on Programming Language Design and Implementation, PLDI 2016, Santa Barbara,
CA, USA, June 13-17, 2016, pages 386–401. ACM, 2016.

[BMM+19] Ryan Beckett, Ratul Mahajan, Todd Millstein, Jitendra Padhye, and David Walker.
Don’t mind the gap: Bridging network-wide objectives and device-level configu-
rations: Brief reflections on abstractions for network programming. SIGCOMM
Comput. Commun. Rev., 49(5):104–106, November 2019.

52

BIBLIOGRAPHY 53

[DGG18] Matthew L. Daggitt, Alexander J. T. Gurney, and Timothy G. Griffin. Asynchronous
convergence of policy-rich distributed bellman-ford routing protocols. In Proceed-
ings of the 2018 Conference of the ACM Special Interest Group on Data Communica-
tion, SIGCOMM ’18, page 103–116, New York, NY, USA, 2018. Association for Com-
puting Machinery.

[Dij59] E. W. Dijkstra. A note on two problems in connexion with graphs. Numer. Math.,
1(1):269–271, December 1959.

[FKM+15] Nate Foster, Dexter Kozen, Matthew Milano, Alexandra Silva, and Laure Thomp-
son. A coalgebraic decision procedure for netkat. In Sriram K. Rajamani and David
Walker, editors, Proceedings of the 42nd Annual ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages, POPL 2015, Mumbai, India, January 15-
17, 2015, pages 343–355. ACM, 2015.

[FKM+16] Nate Foster, Dexter Kozen, Konstantinos Mamouras, Mark Reitblatt, and Alexan-
dra Silva. Probabilistic netkat. In Proceedings of the 25th European Symposium on
Programming Languages and Systems - Volume 9632, page 282–309, Berlin, Heidel-
berg, 2016. Springer-Verlag.

[GS05] Timothy Griffin and João Sobrinho. Metarouting. volume 35, pages 1–12, 10 2005.

[HM12] Peter Höfner and Bernhard Möller. Dijkstra, floyd and warshall meet kleene. Form.
Asp. Comput., 24(4–6):459–476, July 2012.

[KKPB07] Martin Karsten, Srinivasan Keshav, Sanjiva Prasad, and Mirza Beg. An axiomatic
basis for communication. In Jun Murai and Kenjiro Cho, editors, Proceedings of the
ACM SIGCOMM 2007 Conference on Applications, Technologies, Architectures, and
Protocols for Computer Communications, Kyoto, Japan, August 27-31, 2007, pages
217–228. ACM, 2007.

[MAB+08] Nick McKeown, Tom Anderson, Hari Balakrishnan, Guru Parulkar, Larry Peterson,
Jennifer Rexford, Scott Shenker, and Jonathan Turner. Openflow: Enabling innova-
tion in campus networks. SIGCOMM Comput. Commun. Rev., 38(2):69–74, March
2008.

[MHFv16] Jedidiah McClurg, Hossein Hojjat, Nate Foster, and Pavol Černý. Event-driven net-
work programming. SIGPLAN Not., 51(6):369–385, June 2016.

[SEFG15] Steffen Smolka, Spiridon Aristides Eliopoulos, Nate Foster, and Arjun Guha. A fast
compiler for netkat. In Kathleen Fisher and John H. Reppy, editors, Proceedings
of the 20th ACM SIGPLAN International Conference on Functional Programming,
ICFP 2015, Vancouver, BC, Canada, September 1-3, 2015, pages 328–341. ACM,
2015.

[SKF+17] Steffen Smolka, Praveen Kumar, Nate Foster, Dexter Kozen, and Alexandra Silva.
Cantor meets scott: Semantic foundations for probabilistic networks. In Proceed-
ings of the 44th ACM SIGPLAN Symposium on Principles of Programming Lan-
guages, POPL 2017, page 557–571, New York, NY, USA, 2017. Association for Com-
puting Machinery.

© 2023, Avaljot Singh

BIBLIOGRAPHY 54

[SKK+19] Steffen Smolka, Praveen Kumar, David M. Kahn, Nate Foster, Justin Hsu, Dexter
Kozen, and Alexandra Silva. Scalable verification of probabilistic networks. In Pro-
ceedings of the 40th ACM SIGPLAN Conference on Programming Language Design
and Implementation, PLDI 2019, page 190–203, New York, NY, USA, 2019. Associa-
tion for Computing Machinery.

[VS19] Alexander Vandenbroucke and Tom Schrijvers. Pλωnk: Functional probabilistic
netkat. Proc. ACM Program. Lang., 4(POPL), December 2019.

[ZP15] Lenore D. Zuck and Sanjiva Prasad. A switch, in time. In Pierre Ganty and Michele
Loreti, editors, Trustworthy Global Computing - 10th International Symposium,
TGC 2015, Madrid, Spain, August 31 - September 1, 2015 Revised Selected Papers,
volume 9533 of Lecture Notes in Computer Science, pages 131–146. Springer, 2015.

© 2023, Avaljot Singh

	ACKNOWLEDGEMENTS
	ABSTRACT
	LIST OF TABLES
	LIST OF FIGURES
	ABBREVIATIONS
	NOTATION
	Introduction
	Need for Algebraic Network Routing
	Existing Infrastructure and related problems
	Decentralised Network Routing
	Centralised Network Routing

	Network Verification and Debugging
	Algebraic Routing Related work
	Main Contributions

	NetKAT
	Overview
	NetKAT Syntax and Semantics
	Correctness and Reachability properties
	Compilation
	Extensions

	Cost Algebra and Cost NetKAT
	Introduction
	Cost Algebra: Terminology and Properties
	Cost NetKAT - syntax and semantics
	Examples
	Example 1 - Hops vs. Congestion
	Example 2 - Local vs. Cumulative cost

	Axioms, Correctness and Properties of Cost NetKAT
	Soundness
	Completeness
	Reduced Cost NetKAT
	Language Model, G
	Cost NetKAT Normal form
	Completeness Proof

	Reachability properties

	Inter-NetKAT
	Introduction
	KAT homomorphisms
	Non-cost NetKAT homomorphisms
	Preimage
	NetKAT Refinement, Abstraction and Translation
	What happens to NetKAT Automaton?

	Cost NetKAT homomorphisms
	Left semimodule
	Right semimodule

	Cost InterNetKAT
	Horizontal Composition

	Future Work

	Appendix Soundness of Cost NetKAT
	Appendix Completeness of Cost NetKAT
	Appendix NetKAT Automata

